Multiquantaloids

Remigijus Petras GYLYS (MII) e-mail: gyliene@ktl.mii.lt

1. Introduction

The "formulas-as-types" idea (in the type-theoretical approach) is the idea that a formula may be identified with the set of its proofs. Let \mathbb{F} be a set of such "formulas", a set of abstract sets whose elements are viewed as their "proofs". Let $Seq = \mathcal{P}(\mathbb{F}) \times \mathbb{F}$ (where $\mathcal{P}(\mathbb{F})$ denotes the power set of \mathbb{F}) be the set of "sequents", pairs $\Gamma \vdash A$ consisting of a family $\Gamma \subseteq \mathbb{F}$ of formulas and of a formula $A \in \mathbb{F}$ and representing the metalogical claim that A is a consequence of Γ . Finally, let Q be a quantale which is introduced in order to grade sequents. In this paper we show that graded sequents form a multicategory in the sense of J. Lambek [2]. Moreover, it appears that this multicategory has additional properties analogous to those of a quantaloid [5]. We call it "multiquantaloid".

2. Quantales and quantal formulas

We begin with a discussion of quantales. This term was first suggested in 1986 by C.J. Mulvey [3] to model "the logic of quantum mechanics", a logic involving an associative (in general noncommutative) operation "AND THEN".

DEFINITION 2.1 ([4], [5]). A quantale is a complete lattice Q together with an associative binary operation \circ satisfying:

$$q \circ \bigvee_{i} q_{i} = \bigvee_{i} q \circ q_{i}$$
 and $\left(\bigvee_{i} q_{i}\right) \circ q = \bigvee_{i} (q_{i} \circ q)$

for all $q \in Q$ and all families $\{q_i\} \subseteq Q$. A quantale Q is called unital if it has an element 1 such that $1 \circ q = q = q \circ 1$ for all $q \in Q$. It is called commutative if $p \circ q = q \circ p$ for all $p, q \in Q$.

Examples of quantales include real or complex numbers with usual multiplication or addition, the interval [0, 1] of real numbers with a "triangular norm", a lower semicontinuous semigroup operation, complete Boolean algebras, complete Heyting algebras and complete MV-algebras.

DEFINITION 2.2. Let Q be a quantale and A and B be two formulas (sets of "proofs"). A Q-matrix X from A to B is a mapping assigning to each pair a, b of

elements of $A \times B$ an element x_{ab} of Q. Q-matrices compose by "matrix multiplication": for $X: A \to B$ and $Y: B \to C$, the composite $X \circ Y = Z: A \to C$ has its general element given by

$$x_{ac} = \bigvee_{b \in B} x_{ab} \circ y_{bc}.$$

It is clear that this composition is associative. If Q is unital, then the Q-matrix $1_A: A \to A$ defined by

$$(1_A)_{aa'} = \begin{cases} 1, & \text{if } a = a', \\ \bot, & \text{if } a \neq a' \end{cases}$$

(where \perp denotes the bottom element of Q) is the unit Q-matrix on A (neutral with respect to \circ). Now we turn to a "multidimensional" version of this definition.

DEFINITION 2.3. Let Q be a quantale, $\Gamma = \{A_i\}$ a family of formulas and A a formula. A Q-multimatrix $f: \Gamma \to A$ from Γ to A is a mapping assigning to each family $\gamma = \{a_i \in A_i\}$ of proofs of respective formulas and to each proof $a \in A$ an element $f_{\gamma a}$ of Q. If $f: \Gamma \to A$ and $g: \Delta \langle A \rangle \to B$ (where $\Delta \langle A \rangle$ denotes a family $\Delta = \{B_j\}$ of formulas with a fixed formula A, i.e., $B_{j_0} = A$ for some j_0) are Q-matrices, then they can be "composed" to produce a Q-matrix $f \hat{A}g: \Delta \langle \Gamma \rangle \to B$ (where the notation $\Delta \langle \Gamma \rangle$ indicates that the family Γ is "substituted" into the family Δ instead of the formula A) having its general element given by

$$(f\hat{A}g)_{\delta\langle\gamma\rangle b} = \bigvee_{a\in A} f_{\gamma a} \circ g_{\delta\langle a\rangle b},$$

where $\delta \langle a \rangle = \{b_j \in B_j \mid b_{j_0} = a\}, \ \delta \langle \gamma \rangle = \{b_j \in B_j \mid b_{j_0} = \gamma\}, \ b \in B.$ (The notation $f \hat{A}g$ indicates the "orientation" of composition where f is substituted into g.)

It is clear that in the case when $\Gamma = \{A_1\}$ and $\Delta \langle A \rangle = A$ *Q*-multimatrices and their composites reduce to *Q*-matrices and their composites.

DEFINITION 2.4. A Q-formula is a formula A together with a Q-matrix X: $A \rightarrow A$ which is idempotent, i.e., $X \circ X = X$. This Q-matrix is called the graduation of a Q-formula. (To economize on brackets, we shall write A for the (graduated) Q-formula (A, X).)

It is clear that a formula A together with the unit Q-matrix $1_A: A \to A$ (when Q is unital) forms a Q-formula.

DEFINITION 2.5. Let $\Gamma(=\{A_i\}) \vdash A$ be a sequent. A (graded) Q-sequent $f: \Gamma \rightarrow A$ is a Q-multimatrix from Γ to A (forgetting graduations) such that $X_i \circ f = f = f \circ X$ for every *i*, where X_i and X are graduations of formulas A_i and A, respectively. Composites of underlying Q-multimatrices of Q-sequents will be called cuts.

It is clear that any sequent $\Gamma(=\{A_i\}) \vdash A$ is a Q-sequent (putting $X = 1_A, X_i = 1_{A_i}$) for all i). Note that the concept of graded sequents (graded consequence relations) was proposed by M.K. Chakraborty [1] as a certain fuzzy subset of Seq with values in some lattice. In our setting the role of this lattice could play Q-multimatrices.

3. Multicategories and multiquantaloids

We will see that Q-sequents together with cuts form a multicategory in the sense of J. Lambek.

DEFINITION 3.1. ([2]) Let \mathcal{M} be a class of "objects" and let \mathcal{M} be the free monoid generated by \mathcal{M} (its elements are strings $\Gamma = A_1 \dots A_n$ of objects, where n may be zero, in which case Γ is the empty string, which will be denoted by a blank) together with two mappings as follows:

- (i) A mapping assigning to each string $\Gamma \in \mathcal{M}$ and each $A \in \mathcal{M}$ a set $\mathcal{M}(\Gamma, A)$ in this set is called a morphism (in the original text multiarrow or arrow) $f: \Gamma \rightarrow f$ A of \mathcal{M} , with domain Γ and codomain A. Each such morphism has a unique domain and a unique codomain.
- (ii) A mapping assigning to each triple (Γ, Δ, Θ) of strings of objects of \mathcal{M} a map $\mathcal{M}(\Gamma, A) \times \mathcal{M}(\Delta A\Theta, B) \to \mathcal{M}(\Delta \Gamma\Theta, B)$. For morphisms $f: \Gamma \to A$ and $g: \Delta A \Theta \rightarrow B$, this mapping is written as $(f, g) \mapsto f \hat{A} g$ and the morphism $f\hat{A}g: \Delta \Gamma \Theta \rightarrow B$ will here be called the cut (of orientation A) of f with g.

The class $\mathcal M$ with these two mappings is called a multicategory when the following axioms hold:

Associativity: If $f: \Gamma \to A$, $g: \Delta A \Theta \to B$ and $h: \Phi B \Psi \to C$ are morphisms of \mathcal{M} (with indicated domains, codomains and orientations of cuts), then

$$(f\hat{A}g)\hat{B}h = f\hat{A}(g\hat{B}h).$$

Commutativity: If $f: \Gamma \to A$, $g: \Delta \to B$, $h: \Phi A \Theta B \Psi \to C$ are morphisms of \mathcal{M} , then

$$f\hat{A}(g\hat{B}h) = g\hat{B}(f\hat{A}h).$$

Identity: For each object A of \mathcal{M} there exists a morphism $1_A: A \to A$ (called the identity morphism of \mathcal{M}) such that

$$f\colon \Gamma \to A \Rightarrow f \hat{A} 1_A = f; \quad g\colon \Gamma A \Delta \to B \Rightarrow 1_A \hat{A} g = g.$$

Observe that the axioms for a multicategory are much like the axioms for a category, except that morphisms $f: C \to A$ have been replaced by morphisms $f: \Gamma \to A$ (where Γ may be empty) and that for the cut of morphisms f and g in a multicategory we have non-single posibility but maybe a lot of choices for orientations in the domain of g. In the following we will take a freedom to modify the terminology proposed by J. Lambek – instead of strings of objects we will take arbitrary families of objects.

PROPOSITION 3.2. Let Q be a commutative quantale. Then Q-sequents form a multicategory Q-Seq: its objects are Q-formulas, its morphisms are Q-sequents, and its identity morphisms are graduations of Q-formulas. (In the case when Q is non-commutative the axiom of commutativity of Definition 3.1 is not valid. Then Q-Seq satisfies only two axioms: Associativity and Identity.)

Proof. Verifying each of the axioms in turn, we argue as follows. The axiom of associativity: for any *Q*-sequents $f: \Gamma \to A$, $g: \Delta\langle A \rangle \to B$ and $h: \Phi\langle B \rangle \to C$, $(f\hat{A}g)\hat{B}h = f\hat{A}(g\hat{B}h)$ is satisfied, because for each families $\gamma, \delta\langle A \rangle, \phi\langle B \rangle$ of proofs of families $\Gamma, \Delta\langle A \rangle, \Phi\langle B \rangle$ of *Q*-formulas, respectively, and all $c \in C$, obviously, the equality

$$\bigvee_{b\in B} \left(\bigvee_{a\in A} f_{\gamma a} \circ g_{\delta\langle a\rangle b}\right) \circ h_{\phi\langle b\rangle c} = \bigvee_{a\in A} f_{\gamma a} \circ \left(\bigvee_{b\in B} g_{\delta\langle a\rangle b} \circ h_{\phi\langle b\rangle c}\right)$$

holds. The axiom of commutativity: for any $f: \Gamma \to A, g: \Delta \to B, h: \Phi\langle A \rangle \langle B \rangle \to C$, $f\hat{A}(g\hat{B}h) = g\hat{B}(f\hat{A}h)$ is satisfied because, by the commutativity of Q, for each families $\gamma, \delta, \phi \langle A \rangle \langle B \rangle$ of proofs of families $\Gamma, \Delta, \Phi \langle A \rangle \langle B \rangle$ of formulas, respectively, and each $c \in C$, the equality

$$\bigvee_{a \in A} f_{\gamma a} \circ \left(\bigvee_{b \in B} g_{\delta b} \circ h_{\phi \langle a \rangle \langle b \rangle c}\right) = \bigvee_{b \in B} g_{\delta b} \circ \left(\bigvee_{a \in A} f_{\gamma a} \circ h_{\phi \langle a \rangle \langle b \rangle c}\right)$$

holds. Finally, let $X: A \to A$ be the graduation of a *Q*-formula *A*. Then it is easy to check that it is the identity morphism of *A*. The first part of the axiom of identity: if $f: \Gamma \to A$, then $f\hat{A}X = f$, because, by Definition 2.5, for all $\gamma \in \Gamma$, $a \in A$, $\bigvee_{a' \in A} f_{\gamma a'} \circ x_{a'a} = f_{\gamma a}$. Finally, the second part of the axiom of identity: if $g: \Gamma\langle A \rangle \to B$, then $X\hat{A}g = g$ holds, since, for all $a \in A$, $\gamma\langle a \rangle \in \Gamma\langle A \rangle$, $b \in B$, $\bigvee_{a' \in A} x_{aa'} \circ g_{\gamma\langle a' \rangle b} = g_{\gamma\langle a \rangle b}$.

Let us now confine attention to important additional properties of the multicategory Q-Seq.

PROPOSITION 3.3. For every family Γ of objects of Q-Seq and for every object A of Q-Seq, the "hom-set" Q-Seq (Γ, A) of all morphisms from Γ to A is a complete lattice. Moreover, the cut of Q-Seq preserves arbitrary joins in both sides: for all objects A, B, for all families $\Gamma, \Delta(A)$ of objects of Q-Seq, for all morphisms $f: \Gamma \rightarrow A$, $g: \Delta(A) \rightarrow B$ and for all families $\{f_i: \Gamma \rightarrow A\}$ and $\{g_i: \Delta(A) \rightarrow B\}$ of morphisms of Q-Seq,

$$f\hat{A}\bigvee_{i}g_{i} = \bigvee_{i}(f\hat{A}g_{i})$$
 and $\left(\bigvee_{i}f_{i}\right)\hat{A}g = \bigvee_{i}(f_{i}\hat{A}g).$ (1)

Proof. Since Q is a complete lattice, it follows that every $Q-Seq(\Gamma, A)$ is also a complete lattice for the pointwise partial order: if $\{f_i: \Gamma \to A\}$ is a family of Q-

sequents then the relations

$$\left(\bigvee_{i} f_{i}\right)_{\gamma a} = \bigvee_{i} (f_{i})_{\gamma a}$$
 and $\left(\bigwedge_{i} f_{i}\right)_{\gamma a} = \bigwedge_{i} (f_{i})_{\gamma a}$

define Q-sequents $\bigvee_i f_i$ and $\bigwedge_i f_i$, respectively. Since cut of Q-sequents is defined in terms of *joins* and \circ , it will preserve *joins* of *Q*-sequents in each variable: for every formula A, for all $\gamma \in \Gamma$, $\delta \langle A \rangle \subseteq \Delta \langle A \rangle$, $b \in B$,

$$\bigvee_{a \in A} f_{\gamma a} \circ \left(\bigvee_{i} g_{i}\right)_{\delta \langle a \rangle b} = \bigvee_{i} \left(\bigvee_{a \in A} f_{\gamma a} \circ (g_{i})_{\delta \langle a \rangle b}\right)$$

and

$$\bigvee_{a \in A} \left(\bigvee_{i} f_{i}\right)_{\gamma a} \circ g_{\delta \langle a \rangle b} = \bigvee_{i} \left(\bigvee_{a \in A} (f_{i})_{\gamma a} \circ g_{\delta \langle a \rangle b}\right),$$

i.e., (1) holds. This proves the assertion.

We generalize these properties of Q-Seq to arbitrary multicategories.

DEFINITION 3.4. A multiquantaloid is a multicategory such that its hom-sets are complete lattices and its cut preserves arbitrary joins in both variables, i.e., (1) holds. In the absence of commutativity in the sence of Definition 3.1 (e.g., Q-Seq in the case when Q is noncommutative), I prefer to speak of "noncommutative" multiquantaloids.)

Note that multiquantaloids generalize the notion of quantaloid, a category whose hom-sets are complete lattices and composition preserves arbitrary joins in both variables [5].

References

- 1. M.K. Chakraborty, Use of fuzzy set theory in introducing graded consequence in multiple valued logic, in: Fuzzy Logic in Knowledge-Based Systems, Decision and Control, M.M. Gupta and T. Yamakawa (Eds.), North-Holland, Amsterdam (1988), pp. 247–257.
- 2. J. Lambek, Multicategories revisitet, Contemporary Mathematics, 92, 217–239 (1989).

- 3. C.J. Mulvey, &, Rend. Circ. Mat. Palermo, 12, 99-104 (1986).
- 4. K.I. Rosenthal, Quantales and their applications, Pitman Research Notes in Mathematics, 234, Longman, Burnt Mill, Harlow (1990).
- 5. K.I. Rosenthal, The theory of quantaloids, Pitman Research Notes in Mathematics, 348, Longman, Burnt Mill, Harlow (1996).

REZIUMĖ

R.P. Gylys. Multikvantaloidai

Apibrėžiama nauja multikvantaloido sąvoka. Nusakome multikvantaloidą kaip multikategoriją, kurios morfizmai sudaro pilnas gardeles, o pjūviai išsaugo bet kokius supremumus. Iš vienos pusės multikvantaloidai apibendrina kvantaloido sąvoką, o iš kitos jų morfizmai bei jų pjūviai turi loginius atitikmenis.