Decision procedure for a combination of logics KD4 and PDL

Aida PLIUŠKEVIČIENĖ (MII)

e-mail: aida@ktl.mii.lt

1. Introduction

Combinations of modal logics are used as a formal theory that can be helpful for the specification, development, modelling and even the execution of rational agents (see, e.g., [6]). The best known logical theories of rational agents are BDI logics (for Belief, Desire and Intention) [5] and KARO logics (for Knowledge, Abilities, Results and Opportunities) [2]. In BDI logics each rational agent is viewed as having three mental attitudes: belief (the main component of BDI logics), desire and intention. The BDI logics are fusion of various propositional temporal logics and propositional multi-modal logics expressing properties of the mental attitudes. The KARO logics focus on the dynamic of mental states: how actions can change agents knowledge (believes), desires, and so on. The KARO logics are combination of propositional dynamic logic (PDL) [1] and logics of knowledge [2]. In [6] it is described a rich logic LORA (Logic of Rational Agents) based on BDI logic and dynamic logic. Tableau-based decision procedures for BDI logics are presented in [5]. Sequent-based decision procedures for BDI logics is presented in [3]. Sequent-based decision procedures for PDL are presented in [4].

In this paper a propositional dynamic logic of belief (PDLB) is considered. The aim of this paper is to present a deduction-based decision procedure for a fragment of PDLB. A PDLB is a fusion of a deterministic propositional dynamic logic and logic KD4 (which describes properties of asymmetric belief operator [6]) containing variables for actions and propositional variables. Belief operator is the main one describing behaviour of rational agents [6]. The object of consideration in the presented fragment of PDLB is R-sequents (Section 2). Because of a possibility to reduce a R-sequent to a set of R-sequents having some normal form (reduced primary R-sequents, Section 2) a traditional non-invertible, in general, rules for belief modality [3] can be inserted into the disjunctive invertible separation rules (Section 3).

Here a procedural approach of decidable logical calculi is used and we assume that the notions of a decidable calculus and the deduction-based decision procedure are identical. The presented decision procedure is based on sequent-like calculus DB with loop-type axioms (analogously as in [3]).

2. Language of FTLB

PDLB is a fusion of two logics, namely, modal KD4 and deterministic PDL. PDLB contains two-sorts of variables: actions and propositional ones.

A language of PDLB contains: a denumerable set of propositional variables; a denumerable set of actions variables $\alpha_1, \alpha_2, \ldots$; action modalities $[\alpha_k]$; belief modality \mathcal{B} ; logical symbols: $\supset, \land, \lor, \lnot$; action operators: \circ ("composition"), \cup ("nondeterministic choice"), * ("non-deterministic iteration" or "star"), ? ("test"). An arbitrary propositional variable is an atomic formula. Formulas and actions of PDLB are defined inductively as follows: an atomic formula is formula; any action variable is an action; if α and β are actions then $(\alpha \circ \beta)$, $(\alpha \cup \beta)$, α^* are actions; if A, B are formulas, α is an action then $A \supset B$, $A \land B$, $A \lor B$, $\lnot(A)$, $[\alpha]A$, BA are formulas; a formula A is a logical one if A contains only logical and propositional variables; if P is a logical formula then P? is an action.

Thus, in formulas we consider two types of modalities, namely, belief modality \mathcal{B} , and action modalities $[\alpha_i]$.

DEFINITION 1 (R-sequent, induction-free R-sequent). A sequent S is an R-sequent if S satisfies the following regularity condition: if a formula σ A (where $\sigma \in \{\mathcal{B}, [\alpha^*]\}$) occurs negatively in S then A does not contain positive occurrences of the belief modality, and action variables. An R-sequent S is an induction-free one, if S does not contain positive occurrences of the operator * ("star"). Otherwise, an R-sequent S is a non-induction-free one.

Since we consider asymmetric belief modality, belief accessibility relation is only distributive, serial and transitive, but asymmetric. Therefore the formulas $\mathcal{B}(P \supset Q) \land \mathcal{B}P \supset \mathcal{B}Q$, $\mathcal{B}P \supset \mathcal{B}\mathcal{B}P$, $\mathcal{B}P \supset \neg \mathcal{B}\neg P$ (expressing, correspondingly, the distributive, transitive, and serial properties of the accessibility relation) are valid in KD4. But formula $P \supset \mathcal{B}\neg \mathcal{B}\neg P$ (expressing symmetric property of the accessibility relation) is invalid in KD4.

3. Some auxiliary tools of the decision algorithm

In this section, we present the main axiomatic tools of the decision algorithm for Rsequents: separation and reduction rules, and marked contraction rules. First, let us
introduce some canonical forms of R-sequents.

An R-sequent S is a primary R-sequent, if $S = \Sigma_1$, $\mathcal{B}\Gamma_1$, $[\alpha_k]\Pi_1$, $[\alpha^*]\Omega_1 \to \Sigma_2$, $\mathcal{B}\Gamma_2$, $[\beta_l]\Pi_2$, $[\beta^*]\Omega_2$, where for every i ($i \in \{1,2\}$) Σ_i is empty or consists of logical formulas; $\mathcal{B}\Gamma_i$ is empty or consists of formulas of the shape $\mathcal{B}A$; $[\alpha_k]\Pi_1$ ($[\beta_l]\Pi_2$) is empty or consists of formulas of the shape $[\alpha_k]C$ ($[\beta_l]D$, respectively); $[\alpha^*]\Omega_1$ ($[\beta^*]\Omega_2$) is empty or consists of formulas of the shape $[\alpha^*]M$ ($[\beta^*]N$, respectively). An R-sequent S is a reduced primary R-sequent if S is a primary one and does not contain $[\alpha^*]\Omega_1$, $[\beta^*]\Omega_2$.

Let us define reduction rules by means of which each R-sequent can be reduced to a set of primary and reduced primary R-sequents.

Reduction rules consist of the traditional invertible rules for logical symbols and the following rules for actions:

$$\frac{\Gamma \to \Delta, [\alpha][\beta]A}{\Gamma \to \Delta, [\alpha \circ \beta]A} (\to \circ) \qquad \frac{[\alpha][\beta]A, \Gamma \to \Delta}{[\alpha \circ \beta]A, \Gamma \to \Delta} (\circ \to)$$

$$\frac{\Gamma \to \Delta, [\alpha]A; \ \Gamma \to \Delta, [\beta]A}{\Gamma \to \Delta, [\alpha \cup \beta]A} (\to \cup) \qquad \frac{[\alpha]A, [\beta]A, \Gamma \to \Delta}{[\alpha \cup \beta]A, \Gamma \to \Delta} (\cup \to)$$

$$\frac{\Gamma, P \to \Delta, B}{\Gamma \to \Delta, [P?]B} (\to ?) \qquad \frac{\Gamma \to \Delta, P; \ B, \Gamma \to \Delta}{[P?]B, \Gamma \to \Delta} (? \to)$$

$$\frac{\Gamma \to \Delta, A; \ \Gamma \to \Delta, [\alpha][\alpha^*]A}{\Gamma \to \Delta, [\alpha^*]A} (\to *) \qquad \frac{A, [\alpha][\alpha^*]A, \Gamma_1 \to \Delta_1}{[\alpha^*]A, \Gamma_1 \to \Delta_1} (* \to),$$

where $\Gamma_1 \to \Delta_1$ contains positive occurrences of * ("star") and action constants,

$$\frac{A, \Pi \to \Theta}{[\alpha^*]A, \Pi \to \Theta} (*_0 \to),$$

where $\Pi \to \Theta$ does not contain positive occurrences either * ("star") or action constants.

From the shape of the primary R-sequent it is easy to see that bottom-up applying logical rules, and action rules, except the rules for of the "star" operator, each R-sequent can be reduced to a set of primary R-sequents. As follows from the shape of reduced primary R-sequents bottom-up applying reduction rules each primary R-sequent can be reduced to a set of reduced primary R-sequents.

To define separation rules let us introduce a belief-type mark. The mark is of the shape σ^* (where $\sigma \in \{\mathcal{B}, [\alpha_k]\}$), and is defined as follows: if $B = \mathcal{B}A$, then each occurrence of belief and action modalities in A is marked and $\sigma^{**} = \sigma^*$. The mark is meant to restrict applications of separation rules for belief modality and to exclude loops for induction-free R-sequents.

The separation rules (SR_i) , $i \in \{1, 2\}$ is of the following shape, where the conclusion of the rules is a reduced primary R-sequent, such that the sequent $\Sigma_1 \to \Sigma_2$ is not derivable in a propositional logic.

$$\frac{\Pi_{1,i}^{\circ} \to \Pi_{2,j}}{\Sigma_{1}, \mathcal{B}\Gamma_{1}, [\alpha_{k}]\Pi_{1} \to \Sigma_{2}, \mathcal{B}\Gamma_{2}, [\beta_{l}]\Pi_{2}}(SR_{1}),$$

where $[\alpha_k]\Pi_1 = [\alpha_1]\Pi_{1,1}, \ldots, [\alpha_n]\Pi_{1,n}, (n \ge 0)$, i.e., $[\alpha_k]\Pi_1$ may be the empty word; $[\beta_l]\Pi_2 = [\beta_1]\Pi_{2,1}, \ldots, [\beta_m]\Pi_{2,m} \ (m \ge 1)$, and $[\alpha_i]\Pi_{1,i}, \ 0 \le i \le n$, $([\beta_j]\Pi_{2,j}, \ 1 \le j \le m)$ consists of formulas of the shape $[\alpha_i]B_{i,l}$ (of the shape $[\beta_j]M_{j,p}$, respectively); $\Pi_{1,i}^{\circ} = \emptyset$, if $\alpha_i \ne \beta_j$ and $\Pi_{1,i}^{\circ} = \Pi_{1,i}$ in opposite case.

$$\frac{\mathcal{B}^*\Gamma_1, \Gamma_1 \to A_i}{\Sigma_1, \mathcal{B}\Gamma_1, [\alpha_k]\Pi_1 \to \Sigma_2, \mathcal{B}\Gamma_2, [\beta_l]\Pi_2}(SR_2),$$

where $\mathcal{B}\Gamma_2 = \mathcal{B}A_1, \ldots, \mathcal{B}A_i, \ldots, \mathcal{B}A_k$, $(k \ge 0)$ and $A_i = \emptyset$, if k = 0.

Marked contraction rule is defined using an equality σ^*A , $\sigma A = \sigma^*A$ (where $\sigma \in \{B, [\alpha_k]\}$). During the reduction to primary and reduced primary R-sequents the marked contraction rule and the ordinary contraction rule (using an equality A, A = A which follows from the set-type notion of a sequent) will be used implicitly.

4. Decision procedure for R-sequents

A decision procedure for induction-free R-sequents is realized by means of calculus IFDB for the induction-free propositional dynamic logic of belief. The calculus IFDB consists of the separation rules (SR_l) $(l \in \{1, 2\})$, the reduction rules, except the rule $(\to *)$, and logical axiom $\Gamma, A \to \Delta, A$.

Using induction on the height of derivation, we can show that all the reduction rules of the calculus IFTBA are invertible. The separation rules (SR_i) are not simply invertible, but they are disjunctively invertible.

Using induction on the height of derivation, we can prove the following

LEMMA 1. Let S be a conclusion of the rules (SR_i) $(i \in \{1, 2\})$ and $IFDB \vdash S$, then either there exist i, j such that $IFDB \vdash \Pi_{1,i}^{\circ} \to \Pi_{2,j}$, or there exists i such that $IFDB \vdash \mathcal{B}^*\Gamma_1, \Gamma_1 \to A_i$.

An R-sequent S^* is b-final if S^* is not an axiom and contains only propositional variables and/or marked modalities.

The decision procedure for an induction-free sequent S is realized by constructing ordered derivations in the calculus IFTBA.

DEFINITION 2 (ordered derivation, successful and unsuccessful derivation). An ordered derivation D for induction-free R-sequents consists of several horizontal levels. Each level consists of bottom-up applications of reduction rules. At each level, where a set consisting of only reduced-primary R-sequents is received, all possible bottom-up applications of the separation rules (SR_i) , $i \in \{1,2\}$ to every reduced-primary R-sequent are realized. Each bottom-up application of the separation rules (SR_i) ($i \in \{1,2\}$) provides a possibility to construct a different (in general) ordered derivation D_k ($k \ge 1$).

An ordered derivation D_k is a successful one, if each leaf of D_k is a logical axiom. An ordered derivation D_k is a unsuccessful one if in D_k there exists a branch having such a leaf that either a sequent in this leaf contains only atomic formulas and is not an axiom, or a sequent in this leaf is an induction-free R-sequent S^* such that S^* is a b-final R-sequent.

Using the shape of the calculus IFDB and invertibility of the rules of IFDB we can get

THEOREM 1. Let S be an induction-free R-sequent. Then either one can automatically construct a successful ordered derivation D_k of the R-sequent S in IFDB, i.e., IFDB \vdash S, or all possible ordered derivations D_k are unsuccessful, i.e., IFDB $\not\vdash$ S. The process of construction of the ordered derivation D_k of the R-sequent S in IFDB always terminates.

A decision algorithm for an arbitrary R-sequent is realized by means of a calculus DB containing non-logical (loop-type) axiom.

Let D be a derivation in some calculus and (i) be a branch in D. The R-sequent $S^* = \Gamma \to \Delta$ from the branch (i) is a saturated R-sequent if, in the branch (i) above S^* , there exists an R-sequent of the shape $S^{**} = \Gamma$, $\Pi \to \Delta$, Θ , in a special case, $S^* = S^{**}$.

A saturated R-sequent S^* is a-saturated if $S^* = \Gamma \to \Delta$, $[\alpha^*]A$. These sequents will be used as non-logical axiom.

A calculus DB is obtained from the calculus IFDB by adding: (1) a non-logical axiom of the shape $\Gamma \to \Delta$, $[\alpha^*]A$ and (2) the reduction rule $(\to *)$. Disjunctive invertibility of separation rules in DB is provable using infinitary rule for the "star" operator (instead of the rule $(\to *)$ and non-logical axiom) and proving that this infinitary rule is admissible in the calculus DB for R-sequents.

We can present the decision procedure for an arbitrary R-sequent in the same way as in the case of induction-free R-sequents. Namely, we construct ordered derivations in the same manner, as described above. But there is a new substantial point: along with the logical axiom there is a non-logical axiom. If there exists an ordered derivation D_k of R-sequent S such that in each leaf of D there is either a logical axiom, or a non-logical axiom, then $DB \vdash S$. If in all the possible ordered derivations D_k of an R-sequent S there exists a branch having an induction-free R-sequent S⁺ such that $IFDB \nvdash S$ ⁺, then $DB \nvdash S$.

THEOREM 2. Let S be a non-induction-free R-sequent. Then one can automatically construct a successful or unsuccessful ordered derivation D of the R-sequent S in DB. This process always terminates.

Proof. The automatic way of construction of an ordered derivation D and correctness (i.e., preservation of derivability) follow from invertibility of the rules of DB; the termination follows from finiteness of the generated subformulas in D.

References

- 1. D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, MIT Press (2000).
- 2. J.-J.C. Meyer, W. van der Hoek, B. van Linder, A logical approach to the dynamics of commitments, *Artificial Intelligence*, 113(1-2), 1-40 (1999).
- 3. N.Nide, S.Takata, Deduction systems for BDI logics using sequent calculus, *Proc. of AAMAS'02*, 928–935 (2002).
- 4. V.R. Pratt, A near-optimal method for reasoning about action, *Journal of Computer and System Sciences*, 20, 231–254 (1980).
- 5. A.S. Rao, M.P.Georgeff, Decision procedures for BDI logics, *Journal of Logic and Computation*, **8**(3), 292–343 (1998).
- 6. M. Wooldridge. Reasoning about Rational Agents, The MIT Press (2000).

REZIUMĖ

A. Pliuškevičienė. Išsprendžiamoji procedūra K D4 ir PDL logikų apjungimui

Pasiūlyta dedukcija pagrįsta išprendžiamoji procedūra modalinės logikos KD4 ir propozicinės dinaminės logikos PDL apjungimui. Pasiūlyta išprendžiamoji procedūra yra korektiška ir pilna.