Decision procedures for quantified fragments of reflexive common knowledge logic Regimantas PLIUŠKEVIČIUS (MII) e-mail: regis@ktl.mii.lt ## 1. Introduction Logics of knowledge, especially the common knowledge logics, have a lot of applications in computer science and artificial intelligence (see, e.g., [2], [3], [4]). On the other hand, common knowledge operator satisfies induction-like postulates and for this reason is interesting from a logical point of view. A decision procedure for propositional irreflexive common knowledge logic (based on multi-modal logics K_n) can be get relying on sequent-like calculus with analytic cut presented in [1]. Propositional logics for knowledge-based logics are often insufficient for more complex real world situations. First-order extensions of these logics are necessary whenever an application domain is infinite or a cardinality of application domain is not known in advance. In [6] it is presented decidability of some fragments of first-order one-sorted irreflexive common knowledge logics. In [2] it is proved general decidability results for some fragments of first-order one-sorted agent-based logics. In this paper decidable fragments of first-order two-sorted logic of reflexive common knowledge (FRCL) are considered. A language of FRCL is based on first-order two-sorted extension of common knowledge logic [4], containing individual knowledge operators, reflexive "common knowledge" operator and "everyone knows" operator. A reflexive common knowledge is based on reflexive and transitive closure of individual knowledge. The irreflexive knowledge (see, e.g., [3]) is based only on transitive closure of individual knowledge. Individual knowledge operators satisfy modal postulates of first-order two-sorted multi-modal logic K_n . A language of FRCL contains two sorts of variables and constants, namely, variables and constants for agents, variables and constants for other individuals. ## 2. Language of FRCL and calculi FRCL is a first-order version of two-sorted multi-modal logic of reflexive common knowledge denoted as $K_n(C)$. A language of FRCL contains: a denumerable set of predicate symbols; a denumerable set of agent constants a_1, a_2, \ldots ; a denumerable set of constants for other individuals c_1, c_2, \ldots ; a denumerable set of agent variables $x^a, y^a, z^a, x_1^a, y_1^a, \ldots$; a denumerable set of variables for other individuals $x, y, z, x_1, y_1, \ldots$; logical symbols: $\supset, \land, \lor, \neg, \forall, \exists$; knowledge operators: individual knowledge operators $[t_k^a]$ (where $k \in \{1, ..., m\}$ and $m \ge 1$, t_k^a is an agent term); "everyone knows" operator \mathcal{E} and "common knowledge" operator \mathcal{C} . A term is a constant or a variable. An agent term is an agent constant or an agent variable. Formulas are constructed in a traditional way. A formula (sequent) is a logical one if it contains only logical symbols and atomic formulas. The formula $[t_i^a](A)$ means: "agent t_i knows that A". The knowledge operators $[t_i^a]$ $(1 \le i \le n)$ satisfy axioms of the basic multi-modal logic K_n (as in [1]). The formula $\mathcal{E}(A)$ means: "everybody agent $i \in \{1, \ldots, n\}$ knows A", i.e., $\mathcal{E}(A) \equiv \bigwedge_{i=1}^n [t_i^a](A)$. The formula $\mathcal{C}(A)$ means: "A is common knowledge of all agents" (therefore we use only so-called public common knowledge operator). We consider so-called reflexive common knowledge operator [4], which satisfies the following axioms: $\mathcal{C}(A) \supset (A \land \mathcal{E}(\mathcal{C}(A)))$ (common knowledge axiom) and $A \land \mathcal{C}(A \supset \mathcal{E}(A)) \supset \mathcal{C}(A)$ (induction axiom). In the case of irreflexive common knowledge operator [3] instead of these axioms there are the following common knowledge axiom $\mathcal{C}(A) \supset \mathcal{E}(A \land \mathcal{C}(A))$ and the following induction rule: $A \supset \mathcal{E}(A \land B)$ implies $A \supset \mathcal{C}(B)$. A formal semantics of formulas with the knowledge operators $[t_i^a]$, \mathcal{E} and \mathcal{C} can be found in [4]. A sequent S is a *miniscoped* sequent if all negative (positive) occurrences of \forall (\exists , correspondingly) in S occur only in formulas of the shape $Q\bar{x}A(\bar{x})$ and $Qx^a[x^a]B$, where $Q \in \{\forall, \exists\}, \bar{x} = x_1, \dots, x_n, n \geq 0$, $Q\bar{x}A(\bar{x})$ is a decidable logical formula (a logical formula (sequent) is decidable if it belongs to a decidable class of classical first-order logic). A sequent S is an RC-sequent, if S satisfies the following conditions: (a) the sequent S is a miniscoped one (miniscoped condition); (b) if any formula of the shape C(A) occur negatively in S then A does not contain positive occurrences of operator σ (where $\sigma \in \{[t_i^a], C, \mathcal{E}\}$)(regularity condition); (c) the sequent S contains at most one positive occurrence of a formula $\sigma(A)$ where $\sigma \in \{[t^a], \mathcal{E}, \mathcal{C}\}$ and $\sigma(A)$ is not a subformula of another formula, but A can contain occurrences of formulas of the shape σB (Horn-type condition). An RC-sequent is an induction-free one if S does not contain positive occurrences of the induction-type operator C. Let us introduce some canonical forms of RC-sequents. An RC-sequent S is a primary RC-sequent, if $S = \Sigma_1$, $\forall \mathcal{K}_i \Gamma$, $C\Theta \to \Sigma_2$, $\exists \mathcal{K}_j A$, C(B), where for every k ($k \in \{1, 2\}$), Σ_k is empty or consists of decidable logical formulas; $\forall \mathcal{K}_i \Gamma$ is empty or consists of formulas of the shape $\forall x_i^a [x_i^a] M$ or $[a_i] M$ ($1 \le i \le m$); $C\Theta$ is empty or consists of formulas of the shape C(A); $\exists \mathcal{K}_j A$ is empty or is a formula of the shape $\exists x_j^a [x_j^a] A$ or $[a_j] A$ ($j \in \{1, ..., n\}$); C(B) is empty or is a formula of the shape C(B). An RC-sequent S is a reduced primary, if S is a primary one not containing $C\Theta$ and C(B). Log is a calculus in which logical sequents are decidable. As in [1] let us introduce a calculus K_nC_ω containing infinitary rule for the common knowledge operator. This rule defines the semantics of the reflexive common knowledge operator. The calculus K_nC_ω is convenient to prove disjunctive invertibility of separation rules (see below). The calculus K_nC_ω is defined by the following postulates: Logical axiom: $\Sigma_1 \to \Sigma_2$, where $Log \vdash \Sigma_1 \to \Sigma_2$. Logical rules consist of traditional invertible rules for logical symbols. Rules for knowledge: $$\frac{A, \mathcal{E}(\mathcal{C}(A)), \Gamma_1 \to \Delta_1}{\mathcal{C}(A), \Gamma_1 \to \Delta_1} (\mathcal{C} \to) \qquad \frac{A, \Pi \to \Theta}{\mathcal{C}(A), \Pi \to \Theta} (\mathcal{C}_0 \to),$$ where $\Gamma_1 \to \Delta_1$ contains a positive occurrence of knowledge operators; $\Pi \to \Theta$ does not contain positive occurrences of knowledge operators; $$\frac{\Gamma \to \Delta, A; \Gamma \to \Delta, \mathcal{E}(A); \dots; \Gamma \to \Delta; \mathcal{E}^k(A); \dots}{\Gamma \to \Delta, \mathcal{C}(A)} (\to \mathcal{C}_{\omega}),$$ where $k \in \omega = \{0, 1, ...\}; \mathcal{E}^0(A) = A, \mathcal{E}^k(A) = \mathcal{E}(\mathcal{E}^{k-1}(A)), k \ge 1;$ $$\frac{\Gamma \to \Delta, \wedge_{i=1}^{m} [a_i] A}{\Gamma \to \Delta, \mathcal{E}(A)} (\to \mathcal{E}) \qquad \frac{\wedge_{i=1}^{m} [a_i] A, \Gamma \to \Delta}{\mathcal{E}(A), \Gamma \to \Delta} (\mathcal{E} \to).$$ Separation rules: $$\frac{S_l}{\Sigma_1, \forall \mathcal{K}_i \Gamma \to \Sigma_2, \exists \mathcal{K}_j A} (SR_l),$$ where $l \in \{1, 2\}$; the conclusion of these rules is a reduced primary RC-sequent such that $Log \nvdash \Sigma_1 \to \Sigma_2$. Let $\exists \mathcal{K}_j A = \exists x_j^a [x_j^a] A$ and $\forall \mathcal{K}_i \Gamma = \forall \mathcal{K}_i \Gamma_0, [a_1] \Gamma_1, \dots, [a_n] \Gamma_n, (n \geq 0)$ where $\forall \mathcal{K}_i \Gamma_0$ is empty or consists of formulas of the shape $\forall x_i^a [x_i^a] M$; $[a_k] \Gamma_k$ $(1 \leq k \leq n)$ is empty or consists of formulas of the shape $[a_k] N$. Then $S_1 = \Gamma_0, \Gamma_k \to A, k \in \{0, \dots, n\}$. Let $\exists \mathcal{K}_j A = [a_j]A$ and $\forall \mathcal{K}_i \Gamma$ has the same shape as in the previous case. Then $S_2 = \Gamma_0, \Gamma_k^{\circ} \to A$, where $\Gamma_k^{\circ} = \Gamma_k$ if k = j, and $\Gamma_k^{\circ} = \emptyset$ in opposite case. A calculus K_nC is obtained from K_nC_ω by dropping the rule $(\to C_\omega)$. A calculus K_n^*C is obtained from K_nC by adding the following rule: $$\frac{\Gamma \to \Delta, A; \Gamma \to \Delta, \mathcal{E}(\mathcal{C}(A))}{\Gamma \to \Delta, \mathcal{C}(A)} (\to \mathcal{C}^+);$$ Now we define the basic calculus K_n^+C . First, let us introduce some auxiliary notions. Formulas A and A^* are called parametrically identical ones (in symbols $A \approx A^*$) if either $A = A^*$, or A and A^* are congruent, or differ only by the corresponding occurrences of eigen-variables of the rules $(\to \forall)$, $(\exists \to)$. RC-sequents $S = A_1, \ldots, A_n \to A_{n+1}, \ldots, A_{n+m}$ and $S^* = A_1^*, \ldots, A_n^* \to A_{n+1}^*, \ldots, A_{n+m}^*$ are parametrically identical (in symbols $S \approx S^*$), if $\forall k$ $(1 \le k \le n+m)$ formulas A_k and A_k^* are parametrically identical ones. An RC-sequent $S = \Gamma \to \Delta$ subsumes an RC-sequent $S^* = \Pi$, $\Gamma^* \to \Delta^*$, Θ (in symbols $S \succeq S^*$), if $\Gamma \to \Delta \approx \Gamma^* \to \Delta^*$. In this case the RC-sequent S^* is subsumed by S (in a special case, $S = S^*$ or $S \approx S^*$). In derivations in the calculus K_n^+C along with logical axioms non-logical axioms are used. These non-logical axioms are defined in following way. Let (i) be a branch from a derivation and an RC-sequent $S^* = \Gamma^*$, $\Pi \to \Delta^*$, Θ belongs to the branch (i). Let in the branch (i) (below than S^*) there exists RC-sequent $S = \Gamma \to \Delta$ such that $S \succeq S^*$. Then the *RC*-sequent *S* is a *saturated* one. A saturated *RC*-sequent *S* is a *non-logical axiom* (*loop axiom*) if *S* has the following shape: $\Gamma \to \Delta, C(A)$. A calculus K_n^+C is obtained from K_n^*C by adding the non-logical axiom. All rules of the calculi $K_n C_{\omega}$ and $K_n^* C$, except the separation rules (SR_i) $(i \in \{1,2\})$, are invertible. LEMMA 1 (disjunctive invertibility of (SR_i)). Let S be a reduced primary RC-sequent, and S_i , $(i \in \{1,2\})$ be a premise of (SR_i) . Then if $K_nC_\omega \vdash S$ then (1) either $Log \vdash \Sigma_1 \to \Sigma_2$, or (2) there exists such k that $K_nC_\omega \vdash S_1$, or $K_nC_\omega \vdash S_2$. Bottom-up applying logical rules (except the rules $(\to \exists)$ $(\forall \to)$) and rules $(\to \mathcal{E})$, $(\mathcal{E} \to)$ of the calculus K_n^*C any RC-sequent S can be reduced to a set of primary RC-sequents. A reduction of RC-sequent S to a set of reduced primary RC-sequents is carried out bottom-up applying (in all possible ways) rules of K_n^*C . Using the invertibility of these rules we get that if $K_n^*C \vdash S$ then $K_n^*C \vdash S_j$, where $j \in \{1, \ldots, n\}$ is primary (reduced primary) RC-sequent. To prove that the separation rules (SR_i) , $(i \in \{1,2\})$ are disjunctive invertible in K_n^+C let us introduce an invariant calculus INK_nC which is a connecting link between the calculi K_nC_ω and K_n^+C . A calculus INK_nC is obtained from the calculus K_n^*C by adding the following rule: $$\frac{\Gamma \to \Delta, I; \ I \to \mathcal{E}(I); \ I \to A}{\Gamma \to \Delta, \mathcal{C}(A)} (\to \mathcal{C}^*),$$ where a formula I is called an invariant formula and is constructed automatically using the shape of non-logical axioms in a derivation in the calculus K_n^+C . Analogously as in [5] we can prove that $K_n^+C \vdash S \iff INK_nC \vdash S \iff K_nC_\omega \vdash S$, where S is an RC-sequent. Thus, the separation rules (SR_i) , $(i \in \{1, 2\})$ are also disjunctive invertible in K_n^+C . # 3. Decision procedure for RC-sequents First, we present a decision procedure for induction-free RC-sequents. Decision procedure for induction-free RC-sequents is realized by constructing so-called ordered derivation in the calculus K_nC . An ordered derivation D for induction-free RC-sequents is a derivation consisting of several horizontal levels. Each level consists of bottom-up applications of rules of the calculus K_nC . In each level, when a set consisting of only reduced primary RC-sequents is received all possible bottom-up applications of separation rules (SR_i) , $i \in \{1,2\}$ to every reduced primary RC-sequent are carried out. An ordered derivation D is successful one, if each leaf of D is a logical axiom. In opposite case D is unsuccessful. Each bottom-up application of the separation rules (SR_i) $(i \in \{1, 2\})$ supplies a possibility to construct a different (in general) ordered derivation. From the invertibility of the rules of K_nC and from the shape of these rules we get that one can automatically construct a successful or unsuccessful ordered derivation of an RC-sequent S in K_nC . The process of construction of such derivation D always terminates. A decision procedure for non-induction-free RC-sequents is realized constructing an ordered derivation D in the calculus K_n^+C analogously as in the case of induction-free RC-sequent. If each leaf of an ordered derivation D of RC-sequent S is either a logical axiom, or a non-logical axiom then $K_n^+C \vdash S$. In this case D is a successful ordered derivation. In opposite case D is unsuccessful. THEOREM 1. Let S be an RC-sequent. Then one can automatically construct a successful or unsuccessful ordered derivation of the RC-sequent S in K_n^+C . This process always terminates. *Proof.* Automatic way of construction of an ordered derivation D and correctness (i.e., preservation of derivability) follows from invertibility of the rules; termination follows from finiteness of a set of generated subformulas in D (congruent subformulas are merged). Depending on decision procedures for different fragments of first-order logic we can get decision procedures for different fragments of FRCL. ## References - 1. L. Alberucci, G. Jäger, About cut elimination for logics of common knowledge, to appear in *Annals of Pure and Applied Logic*. - 2. D.M. Gabbay, F. Kurucz, F. Wolter, U. Zakharyaschev, Many-dimensional Modal Logics: Theoy and Applications, Elsevier (2003). - 3. J.Y. Halpen, Y. Moses, Knowledge and common knowledge in a distributed environment, *Journal of the ACM*, 37(3), 549–587 (1990). - 4. J.-J.C. Meyer, W. van der Hoek, *Epistemic Logic for AI and Computer Science*, Cambridge University Press, Cambridge (1995). - 5. R. Pliuškevičius. The saturated tableaux for linear miniscoped Horn-like temporal logic. *Journal of Automated Reasoning*, **13**, 51–67 (1994). - 6. F. Wolter, First-order common knowledge logics. Studia Logica, 65, 249–271 (2000). #### REZIUMĖ #### R. Pliuškevičius. Refleksyviosios bendro žinojimo logikos išsprendžiami kvantoriniai fragmentai Pasiūlytos išprendžiamosios procedūros refleksyviosios bendro žinojimo logikos kvantoriniams fragmentams. Išprendžiamosios procedūros yra grindžiamos sekvenciniais skaičiavimais.