Decision procedures for quantified fragments of reflexive common knowledge logic

Regimantas PLIUŠKEVIČIUS (MII)

e-mail: regis@ktl.mii.lt

1. Introduction

Logics of knowledge, especially the common knowledge logics, have a lot of applications in computer science and artificial intelligence (see, e.g., [2], [3], [4]). On the other hand, common knowledge operator satisfies induction-like postulates and for this reason is interesting from a logical point of view. A decision procedure for propositional irreflexive common knowledge logic (based on multi-modal logics K_n) can be get relying on sequent-like calculus with analytic cut presented in [1]. Propositional logics for knowledge-based logics are often insufficient for more complex real world situations. First-order extensions of these logics are necessary whenever an application domain is infinite or a cardinality of application domain is not known in advance. In [6] it is presented decidability of some fragments of first-order one-sorted irreflexive common knowledge logics. In [2] it is proved general decidability results for some fragments of first-order one-sorted agent-based logics.

In this paper decidable fragments of first-order two-sorted logic of reflexive common knowledge (FRCL) are considered. A language of FRCL is based on first-order two-sorted extension of common knowledge logic [4], containing individual knowledge operators, reflexive "common knowledge" operator and "everyone knows" operator. A reflexive common knowledge is based on reflexive and transitive closure of individual knowledge. The irreflexive knowledge (see, e.g., [3]) is based only on transitive closure of individual knowledge. Individual knowledge operators satisfy modal postulates of first-order two-sorted multi-modal logic K_n . A language of FRCL contains two sorts of variables and constants, namely, variables and constants for agents, variables and constants for other individuals.

2. Language of FRCL and calculi

FRCL is a first-order version of two-sorted multi-modal logic of reflexive common knowledge denoted as $K_n(C)$.

A language of FRCL contains: a denumerable set of predicate symbols; a denumerable set of agent constants a_1, a_2, \ldots ; a denumerable set of constants for other individuals c_1, c_2, \ldots ; a denumerable set of agent variables $x^a, y^a, z^a, x_1^a, y_1^a, \ldots$; a denumerable set of variables for other individuals $x, y, z, x_1, y_1, \ldots$; logical symbols: $\supset, \land, \lor, \neg, \forall, \exists$; knowledge operators: individual knowledge operators

 $[t_k^a]$ (where $k \in \{1, ..., m\}$ and $m \ge 1$, t_k^a is an agent term); "everyone knows" operator \mathcal{E} and "common knowledge" operator \mathcal{C} . A term is a constant or a variable. An agent term is an agent constant or an agent variable. Formulas are constructed in a traditional way. A formula (sequent) is a logical one if it contains only logical symbols and atomic formulas.

The formula $[t_i^a](A)$ means: "agent t_i knows that A". The knowledge operators $[t_i^a]$ $(1 \le i \le n)$ satisfy axioms of the basic multi-modal logic K_n (as in [1]). The formula $\mathcal{E}(A)$ means: "everybody agent $i \in \{1, \ldots, n\}$ knows A", i.e., $\mathcal{E}(A) \equiv \bigwedge_{i=1}^n [t_i^a](A)$. The formula $\mathcal{C}(A)$ means: "A is common knowledge of all agents" (therefore we use only so-called public common knowledge operator). We consider so-called reflexive common knowledge operator [4], which satisfies the following axioms: $\mathcal{C}(A) \supset (A \land \mathcal{E}(\mathcal{C}(A)))$ (common knowledge axiom) and $A \land \mathcal{C}(A \supset \mathcal{E}(A)) \supset \mathcal{C}(A)$ (induction axiom). In the case of irreflexive common knowledge operator [3] instead of these axioms there are the following common knowledge axiom $\mathcal{C}(A) \supset \mathcal{E}(A \land \mathcal{C}(A))$ and the following induction rule: $A \supset \mathcal{E}(A \land B)$ implies $A \supset \mathcal{C}(B)$. A formal semantics of formulas with the knowledge operators $[t_i^a]$, \mathcal{E} and \mathcal{C} can be found in [4].

A sequent S is a *miniscoped* sequent if all negative (positive) occurrences of \forall (\exists , correspondingly) in S occur only in formulas of the shape $Q\bar{x}A(\bar{x})$ and $Qx^a[x^a]B$, where $Q \in \{\forall, \exists\}, \bar{x} = x_1, \dots, x_n, n \geq 0$, $Q\bar{x}A(\bar{x})$ is a decidable logical formula (a logical formula (sequent) is decidable if it belongs to a decidable class of classical first-order logic).

A sequent S is an RC-sequent, if S satisfies the following conditions: (a) the sequent S is a miniscoped one (miniscoped condition); (b) if any formula of the shape C(A) occur negatively in S then A does not contain positive occurrences of operator σ (where $\sigma \in \{[t_i^a], C, \mathcal{E}\}$)(regularity condition); (c) the sequent S contains at most one positive occurrence of a formula $\sigma(A)$ where $\sigma \in \{[t^a], \mathcal{E}, \mathcal{C}\}$ and $\sigma(A)$ is not a subformula of another formula, but A can contain occurrences of formulas of the shape σB (Horn-type condition). An RC-sequent is an induction-free one if S does not contain positive occurrences of the induction-type operator C.

Let us introduce some canonical forms of RC-sequents.

An RC-sequent S is a primary RC-sequent, if $S = \Sigma_1$, $\forall \mathcal{K}_i \Gamma$, $C\Theta \to \Sigma_2$, $\exists \mathcal{K}_j A$, C(B), where for every k ($k \in \{1, 2\}$), Σ_k is empty or consists of decidable logical formulas; $\forall \mathcal{K}_i \Gamma$ is empty or consists of formulas of the shape $\forall x_i^a [x_i^a] M$ or $[a_i] M$ ($1 \le i \le m$); $C\Theta$ is empty or consists of formulas of the shape C(A); $\exists \mathcal{K}_j A$ is empty or is a formula of the shape $\exists x_j^a [x_j^a] A$ or $[a_j] A$ ($j \in \{1, ..., n\}$); C(B) is empty or is a formula of the shape C(B). An RC-sequent S is a reduced primary, if S is a primary one not containing $C\Theta$ and C(B).

Log is a calculus in which logical sequents are decidable.

As in [1] let us introduce a calculus K_nC_ω containing infinitary rule for the common knowledge operator. This rule defines the semantics of the reflexive common knowledge operator. The calculus K_nC_ω is convenient to prove disjunctive invertibility of separation rules (see below). The calculus K_nC_ω is defined by the following postulates:

Logical axiom: $\Sigma_1 \to \Sigma_2$, where $Log \vdash \Sigma_1 \to \Sigma_2$.

Logical rules consist of traditional invertible rules for logical symbols.

Rules for knowledge:

$$\frac{A, \mathcal{E}(\mathcal{C}(A)), \Gamma_1 \to \Delta_1}{\mathcal{C}(A), \Gamma_1 \to \Delta_1} (\mathcal{C} \to) \qquad \frac{A, \Pi \to \Theta}{\mathcal{C}(A), \Pi \to \Theta} (\mathcal{C}_0 \to),$$

where $\Gamma_1 \to \Delta_1$ contains a positive occurrence of knowledge operators; $\Pi \to \Theta$ does not contain positive occurrences of knowledge operators;

$$\frac{\Gamma \to \Delta, A; \Gamma \to \Delta, \mathcal{E}(A); \dots; \Gamma \to \Delta; \mathcal{E}^k(A); \dots}{\Gamma \to \Delta, \mathcal{C}(A)} (\to \mathcal{C}_{\omega}),$$

where $k \in \omega = \{0, 1, ...\}; \mathcal{E}^0(A) = A, \mathcal{E}^k(A) = \mathcal{E}(\mathcal{E}^{k-1}(A)), k \ge 1;$

$$\frac{\Gamma \to \Delta, \wedge_{i=1}^{m} [a_i] A}{\Gamma \to \Delta, \mathcal{E}(A)} (\to \mathcal{E}) \qquad \frac{\wedge_{i=1}^{m} [a_i] A, \Gamma \to \Delta}{\mathcal{E}(A), \Gamma \to \Delta} (\mathcal{E} \to).$$

Separation rules:

$$\frac{S_l}{\Sigma_1, \forall \mathcal{K}_i \Gamma \to \Sigma_2, \exists \mathcal{K}_j A} (SR_l),$$

where $l \in \{1, 2\}$; the conclusion of these rules is a reduced primary RC-sequent such that $Log \nvdash \Sigma_1 \to \Sigma_2$.

Let $\exists \mathcal{K}_j A = \exists x_j^a [x_j^a] A$ and $\forall \mathcal{K}_i \Gamma = \forall \mathcal{K}_i \Gamma_0, [a_1] \Gamma_1, \dots, [a_n] \Gamma_n, (n \geq 0)$ where $\forall \mathcal{K}_i \Gamma_0$ is empty or consists of formulas of the shape $\forall x_i^a [x_i^a] M$; $[a_k] \Gamma_k$ $(1 \leq k \leq n)$ is empty or consists of formulas of the shape $[a_k] N$. Then $S_1 = \Gamma_0, \Gamma_k \to A, k \in \{0, \dots, n\}$.

Let $\exists \mathcal{K}_j A = [a_j]A$ and $\forall \mathcal{K}_i \Gamma$ has the same shape as in the previous case. Then $S_2 = \Gamma_0, \Gamma_k^{\circ} \to A$, where $\Gamma_k^{\circ} = \Gamma_k$ if k = j, and $\Gamma_k^{\circ} = \emptyset$ in opposite case.

A calculus K_nC is obtained from K_nC_ω by dropping the rule $(\to C_\omega)$.

A calculus K_n^*C is obtained from K_nC by adding the following rule:

$$\frac{\Gamma \to \Delta, A; \Gamma \to \Delta, \mathcal{E}(\mathcal{C}(A))}{\Gamma \to \Delta, \mathcal{C}(A)} (\to \mathcal{C}^+);$$

Now we define the basic calculus K_n^+C . First, let us introduce some auxiliary notions. Formulas A and A^* are called parametrically identical ones (in symbols $A \approx A^*$) if either $A = A^*$, or A and A^* are congruent, or differ only by the corresponding occurrences of eigen-variables of the rules $(\to \forall)$, $(\exists \to)$. RC-sequents $S = A_1, \ldots, A_n \to A_{n+1}, \ldots, A_{n+m}$ and $S^* = A_1^*, \ldots, A_n^* \to A_{n+1}^*, \ldots, A_{n+m}^*$ are parametrically identical (in symbols $S \approx S^*$), if $\forall k$ $(1 \le k \le n+m)$ formulas A_k and A_k^* are parametrically identical ones. An RC-sequent $S = \Gamma \to \Delta$ subsumes an RC-sequent $S^* = \Pi$, $\Gamma^* \to \Delta^*$, Θ (in symbols $S \succeq S^*$), if $\Gamma \to \Delta \approx \Gamma^* \to \Delta^*$. In this case the RC-sequent S^* is subsumed by S (in a special case, $S = S^*$ or $S \approx S^*$).

In derivations in the calculus K_n^+C along with logical axioms non-logical axioms are used. These non-logical axioms are defined in following way. Let (i) be a branch from a derivation and an RC-sequent $S^* = \Gamma^*$, $\Pi \to \Delta^*$, Θ belongs to the branch (i). Let in the branch (i) (below than S^*) there exists RC-sequent $S = \Gamma \to \Delta$ such that

 $S \succeq S^*$. Then the *RC*-sequent *S* is a *saturated* one. A saturated *RC*-sequent *S* is a *non-logical axiom* (*loop axiom*) if *S* has the following shape: $\Gamma \to \Delta, C(A)$.

A calculus K_n^+C is obtained from K_n^*C by adding the non-logical axiom.

All rules of the calculi $K_n C_{\omega}$ and $K_n^* C$, except the separation rules (SR_i) $(i \in \{1,2\})$, are invertible.

LEMMA 1 (disjunctive invertibility of (SR_i)). Let S be a reduced primary RC-sequent, and S_i , $(i \in \{1,2\})$ be a premise of (SR_i) . Then if $K_nC_\omega \vdash S$ then (1) either $Log \vdash \Sigma_1 \to \Sigma_2$, or (2) there exists such k that $K_nC_\omega \vdash S_1$, or $K_nC_\omega \vdash S_2$.

Bottom-up applying logical rules (except the rules $(\to \exists)$ $(\forall \to)$) and rules $(\to \mathcal{E})$, $(\mathcal{E} \to)$ of the calculus K_n^*C any RC-sequent S can be reduced to a set of primary RC-sequents. A reduction of RC-sequent S to a set of reduced primary RC-sequents is carried out bottom-up applying (in all possible ways) rules of K_n^*C . Using the invertibility of these rules we get that if $K_n^*C \vdash S$ then $K_n^*C \vdash S_j$, where $j \in \{1, \ldots, n\}$ is primary (reduced primary) RC-sequent.

To prove that the separation rules (SR_i) , $(i \in \{1,2\})$ are disjunctive invertible in K_n^+C let us introduce an invariant calculus INK_nC which is a connecting link between the calculi K_nC_ω and K_n^+C . A calculus INK_nC is obtained from the calculus K_n^*C by adding the following rule:

$$\frac{\Gamma \to \Delta, I; \ I \to \mathcal{E}(I); \ I \to A}{\Gamma \to \Delta, \mathcal{C}(A)} (\to \mathcal{C}^*),$$

where a formula I is called an invariant formula and is constructed automatically using the shape of non-logical axioms in a derivation in the calculus K_n^+C .

Analogously as in [5] we can prove that $K_n^+C \vdash S \iff INK_nC \vdash S \iff K_nC_\omega \vdash S$, where S is an RC-sequent. Thus, the separation rules (SR_i) , $(i \in \{1, 2\})$ are also disjunctive invertible in K_n^+C .

3. Decision procedure for RC-sequents

First, we present a decision procedure for induction-free RC-sequents. Decision procedure for induction-free RC-sequents is realized by constructing so-called ordered derivation in the calculus K_nC .

An ordered derivation D for induction-free RC-sequents is a derivation consisting of several horizontal levels. Each level consists of bottom-up applications of rules of the calculus K_nC . In each level, when a set consisting of only reduced primary RC-sequents is received all possible bottom-up applications of separation rules (SR_i) , $i \in \{1,2\}$ to every reduced primary RC-sequent are carried out. An ordered derivation D is successful one, if each leaf of D is a logical axiom. In opposite case D is unsuccessful.

Each bottom-up application of the separation rules (SR_i) $(i \in \{1, 2\})$ supplies a possibility to construct a different (in general) ordered derivation.

From the invertibility of the rules of K_nC and from the shape of these rules we get that one can automatically construct a successful or unsuccessful ordered derivation of an RC-sequent S in K_nC . The process of construction of such derivation D always terminates.

A decision procedure for non-induction-free RC-sequents is realized constructing an ordered derivation D in the calculus K_n^+C analogously as in the case of induction-free RC-sequent. If each leaf of an ordered derivation D of RC-sequent S is either a logical axiom, or a non-logical axiom then $K_n^+C \vdash S$. In this case D is a successful ordered derivation. In opposite case D is unsuccessful.

THEOREM 1. Let S be an RC-sequent. Then one can automatically construct a successful or unsuccessful ordered derivation of the RC-sequent S in K_n^+C . This process always terminates.

Proof. Automatic way of construction of an ordered derivation D and correctness (i.e., preservation of derivability) follows from invertibility of the rules; termination follows from finiteness of a set of generated subformulas in D (congruent subformulas are merged).

Depending on decision procedures for different fragments of first-order logic we can get decision procedures for different fragments of FRCL.

References

- 1. L. Alberucci, G. Jäger, About cut elimination for logics of common knowledge, to appear in *Annals of Pure and Applied Logic*.
- 2. D.M. Gabbay, F. Kurucz, F. Wolter, U. Zakharyaschev, Many-dimensional Modal Logics: Theoy and Applications, Elsevier (2003).
- 3. J.Y. Halpen, Y. Moses, Knowledge and common knowledge in a distributed environment, *Journal of the ACM*, 37(3), 549–587 (1990).
- 4. J.-J.C. Meyer, W. van der Hoek, *Epistemic Logic for AI and Computer Science*, Cambridge University Press, Cambridge (1995).
- 5. R. Pliuškevičius. The saturated tableaux for linear miniscoped Horn-like temporal logic. *Journal of Automated Reasoning*, **13**, 51–67 (1994).
- 6. F. Wolter, First-order common knowledge logics. Studia Logica, 65, 249–271 (2000).

REZIUMĖ

R. Pliuškevičius. Refleksyviosios bendro žinojimo logikos išsprendžiami kvantoriniai fragmentai

Pasiūlytos išprendžiamosios procedūros refleksyviosios bendro žinojimo logikos kvantoriniams fragmentams. Išprendžiamosios procedūros yra grindžiamos sekvenciniais skaičiavimais.