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1. Introduction

Logics of knowledge, especially the common knowledge logics, have a lot of appli-
cations in computer science and artificial intelligence (see, e.g., [2], [3], [4]). On the
other hand, common knowledge operator satisfies induction-like postulates and for this
reason is inferesting from a logical point of view. A decision procedure for proposi-
tional irreflexive common knowledge logic (based on multi-modal logics K,) can be
get relying on sequent-like calculus with analytic cut presented in [1]. Propositional
logics for knowledge-based logics are often insufficient for more complex real world
situations. First-order extensions of these logics are necessary whenever an application
domain is infinite or a cardinality of application domain is not known in advance. In
[6] it is presented decidability of some fragments of first-order one-sorted irreflexive
common knowledge logics. In [2] it is proved general decidability results for some
fragments of first-order one-sorted agent-based logics.

In this paper decidable fragments of first-order two-sorted logic of reflexive com-
mon knowledge (FRC L) are considered. A language of FFRCL is based on first-order
two-sorted extension of common knowledge logic [4], containing individual knowl-
edge operators, reflexive “common knowledge” operator and “everyone knows” op-
erator. A reflexive common knowledge is based on reflexive and transitive closure of
individual knowledge. The irreflexive knowledge (see, e.g., [3]) is based only on tran-
sitive closure of individual knowledge. Individual knowledge operators satisfy modal
postulates of first-order two-sorted multi-modal logic K,,. A language of FRCL con-
tains two sorts of variables and constants, namely, variables and constants for agents,
variables and constants for other individuals.

2. Language of FRCL and calculi

FRCL is a first-order version of two-sorted multi-modal logic of reflexive common
knowledge denoted as K, (C).

A language of FRCL contains: a denumerable set of predicate symbols; a de-
numerable set of agent constants ai,as,...; a denumerable set of constants for
other individuals cy,c3,...; a denumerable set of agent variables x¢, y?,z%, x{,
¥{»---; a denumerable set of variables for other individuals x, y, z, x1, y1, .. .; logi-
cal symbols: D, A, Vv, =, V, J; knowledge operators: individual knowledge operators
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[t;] (where k € {1,...,m} and m > 1, ¢ is an agent term); “everyone knows” oper-
ator £ and “common knowledge” operator C. A term is a constant or a variable. An
agent term iIs an agent constant or an agent variable. Formulas are constructed in a
traditional way. A formula (sequent) is a logical one if it contains only logical symbols
and atomic formulas.

The formula [7'](A) means: “agent ¢; knows that A”. The knowledge operators [£{]
(1 <1 < n) satisfy axioms of the basic multi-modal logic K,, (as in [1]). The formula
£(A) means: “everybody agent i € {1,...,n} knows A”, i.e., E(A) = /\?zl[ti“](A).
The formula C(A) means: “A is common knowledge of all agents” (therefore we use
only so-called public common knowledge operator). We consider so-called reflex-
ive common knowledge operator [4], which satisfies the following axioms: C(A) D
(A A E(C(A))) (common knowledge axiom) and A A C(A D E(A)) D C(A) (induc-
tion axiom). In the case of irreflexive common knowledge operator [3] instead of these
axioms there are the following common knowledge axiom C(A) D £(A A C(A)) and
the following induction rule: A D £(A A B) implies A D C(B). A formal semantics of
formulas with the knowledge operators [£%], € and C can be found in [4].

A sequent S is a miniscoped sequent if all negative (positive) occurrences of V (3,
correspondingly) in § occur only in formulas of the shape QxA(x) and Qx?[x%]B,
where Q € {V,3}, x = x1,...,x,, n >0, OxA(x) is a decidable logical formula (a
logical formula (sequent) is decidable if it belongs to a decidable class of classical
first-order logic).

A sequent S is an RC-sequent, if S satisfies the following conditions: (a) the se-
quent S is a miniscoped one (miniscoped condition); (b) if any formula of the shape
C(A) occur negatively in S then A does not contain positive occurrences of operator o
(where o € {[t'], C, £})(regularity condition); (c) the sequent S contains at most one
positive occurrence of a formula o (A) where o € {[t?], €, C} and o (A) is not a subfor-
mula of another formula, but A can contain occurrences of formulas of the shape o B
(Horn-type condition). An RC-sequent is an induction-free one if S does not contain
positive occurrences of the induction-type operator C.

Let us introduce some canonical forms of RC-sequents.

An RC-sequent S is a primary RC-sequent, if S = ¥, VK;T', CO — X,, KA,
C(B), where for every k (k € {1,2}), i is empty or consists of decidable logical
formulas; VX, I" is empty or consists of formulas of the shape Vx'[x?|M or [a; 1M (1 <
i <m); CO is empty or consists of formulas of the shape C(A); 3K jA is empty or is
a formula of the shape Exj.‘[xj-’]A or [a;]A (j €{1,...,n}); C(B) is empty or is a
formula of the shape C(B). An RC-sequent S is a reduced primary, if S is a primary
one not containing C® and C(B).

Log is a calculus in which logical sequents are decidable.

Asin [1] let us introduce a calculus X,,C,, containing infinitary rule for the common

knowledge operator. This rule defines the semantics of the reflexive common knowl-
edge operator. The calculus K, C, is convenient to prove disjunctive invertibility of
separation rules (see below). The calculus K,C,, is defined by the following postu-
lates:

Logical axiom: ¥; — X,, where Log - X; — X,.

Logical rules consist of traditional invertible rules for logical symbols.
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Rules for knowledge:

A,E(C(A)), T = A ATl — 06

C(A). T — A €= saomse ™

where '] — A contains a positive occurrence of knowledge operators; I1 — © does
not contain positive occurrences of knowledge operators;

> A AT — AEA);...;T = A; EX(A); .
[ > A,C(A)

where k e w ={0,1,...}; E%A) = A, EX(A) =EEF1(A)), k> 1

I'—> A, A [ai]A N lai]A T — A
1= — &) L=
= A,E(A) EA), I »> A

— (= Co),

—).

Separation rules:
S
. X1, VK — %,,3K A
where [ € {1, 2}; the conclusion of these rules is a reduced primary RC-sequent such
that Log ¥ X1 — X». |
Let 3K;A = ij.’[x;?]A and VIC;I' = VK,;Tg, [a11T'y, ..., [an]s, (n = 0) where
VKT is empty or consists of formulas of the shape Vx[x'|M; [ar]['x (1 <k < n)
is empty or consists of formulas of the shape [ax]N. Then §; =T'g,I'x = A, k€

{0,...,n}.

Let EIIC A =[a;]A and VK;T" has the same shape as in the previous case. Then
S>» =T, F° — A, where I'} =T if k = j, and I') = & in opposite case.

A calculus K,C is obtalned from K, C,, by dropping the rule (— C,).

A calculus K*C is obtained from K, C by adding the following rule:

' > AA; T — A,E(C(A))
I'—> A,C(A)

(SRy),

(— Cy;

Now we define the basic calculus K ,'f C. First, let us introduce some auxiliary no-
tions. Formulas A and A* are called parametrically identical ones (in symbols
A ~ A*) if either A = A*, or A and A* are congruent, or differ only by the cor-
responding occurrences of eigen-variables of the rules (— V), (3 —). RC-sequents
S=A1,....,An = Aps1,..-, Apym and S* = AT, . A} — AT ... AN, are
parametrically identical (in symbols S ~ §*), if Vk (1 < k < n + m) formulas Ag
and A} are parametrically identical ones. An RC-sequent S =T — A subsumes an
RC- sequent S* =TI, '* — A*, © (insymbols § > §*),if [ > A~T* - A*. In
this case the RC-sequent S* is subsumed by S (in a special case, S = §* or § ~ §¥).
In derivations in the calculus K~ C along with logical axioms non-logical axioms
are used. These non-logical axioms are defined in following way. Let (i) be a branch
from a derivation and an RC-sequent $* =I'*, [T — A*, ® belongs to the branch (i).

Let in the branch (i) (below than S*) there exists RC-sequent S =I" — A such that
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S > §*. Then the RC-sequent S is a saturated one. A saturated RC-sequent S is a
non-logical axiom (loop axiom) if S has the following shape: I' — A,C(A).

A calculus K} C is obtained from K*C by adding the non-logical axiom.

All rules of the calculi K,C,, and K}C, except the separation rules (SR;) (i €
{1,2}), are invertible.

LEMMA 1 (disjunctive invertibility of (SR;)). Let S be a reduced primary RC-se-
quent, and S;, (i € {1,2}) be a premise of (SR;). Then if K,C, ‘- S then (1) either
Log X1 — X9, or(2) there exists such k that K,C, - S1, or K,C, - S,.

Bottom-up applying logical rules (except the rules (— 3) (V —)) and rules (—
&), (€ —) of the calculus KfC any RC-sequent S can be reduced to a set of primary
RC-sequents. A reduction of RC-sequent S to a set of reduced primary RC-sequents
is carried out bottom-up applying (in all possible ways) rules of K*C. Using the in-
vertibility of these rules we get that if K;C - S then K;}C - S}, where j € {1,...,n}
is primary (reduced primary) RC-sequent.

To prove that the separation rules (SR;), (i € {1,2}) are disjunctive invertible in
K, C let us introduce an invariant calculus /N K, C which is a connecting link be-
tween the calculi K,C,, and K C. A calculus INK,, C is obtained from the calculus
K C by adding the following rule:

Fr->AL I->EU); - A
I'—> A,C(A)

where a formula / is called an invariant formula and is constructed automatically using
the shape of non-logical axioms in a derivation in the calculus K+ C.

Analogously as in [5] we can prove that KYC S <= INK,C|F § <
K,Cy S, where S is an RC-sequent. Thus, the separation rules (SR;), (i € {1,2})
are also disjunctive invertible in K C.

— C"),

3. Decision procedure for RC-sequents

First, we present a decision procedure for induction-free RC-sequents. Decision pro-
cedure for induction-free RC-sequents is realized by constructing se-called ordered
derivation in the calculus K,,C.

An ordered derivation D for induction-free RC-sequents is a derivation consisting
of several horizontal levels. Each level consists of bottom-up applications of rules of
the calculus K, C. In each level, when a set consisting of only reduced primary RC-
sequents is received all possible bottom-up applications of separation rules (SR;), i €
{1, 2} to every reduced primary RC-sequent are carried out. An ordered derivation D is
successful one, if each leaf of D is a logical axiom. In opposite case D is unsuccessful.

Each bottom-up application of the separation rules (SR;) (i € {1,2}) supplies a
possibility to construct a different (in general) ordered derivation.

From the invertibility of the rules of K,,C and from the shape of these rules we get
that one can automatically construct a successful or unsuccessful ordered derivation
of an RC-sequent § in K, C. The process of construction of such derivation D always
terminates.
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A decision procedure for non-induction-free RC-sequents is realized constructing
an ordered derivation D in the calculus K" C analogously as in the case of induction-
free RC-sequent. If each leaf of an ordered derivation D of RC-sequent S is either a
logical axiom, or a non-logical axiom then K;FC I S. In this case D is a successful
ordered derivation. In opposite case D is unsuccessful.

THEOREM 1. Let S be an RC-sequent. Then one can automatically construct a
successful or unsuccessful ordered derivation of the RC-sequent S in K" C. This pro-
cess always terminates.

Proof. Automatic way of construction of an ordered derivation D and correctness
(i.e., preservation of derivability) follows from invertibility of the rules; termination
follows from finiteness of a set of generated subformulas in D (congruent subformulas
are merged).

Depending on decision procedures for different fragments of first-order logic we
can get decision procedures for different fragments of FRCL.
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REZIUME

R. Pliuskevicius. Refleksyviosios bendro Zinojimo logikos issprendZiami kvantoriniai fragmentai

Pasitlytos iSprendZiamosios procediiros refleksyviosios bendro Zinojimo logikos kvantoriniams frag-
mentams. ISprendZiamosios procediiros yra grindziamos sekvenciniais skaiiavimais.



