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1. Introduction

The aim of this paper is to investigate application of resampling methods for estimation
of the variance of nonlinear estimator of the parameter in finite population and for
complex sampling design.

Income per capita is one of the parameters which are estimated in household budget
survey. Because of stratified two stage sampling design and auxiliary information used
at the estimation stage this estimator becomes complex. It is difficult to estimate its
variance. It seems that traditionally used method underestimates this variance. The aim
of this work is using traditional method, random groups, jackknife and mirror match
bootstrap method to estimate this variance and to compare the estimates in order to
choose the most suitable method.

The methods applied here can be used in other complex surveys also.

2. Survey population and sampling design

As a survey population U is used the data of the real household budget survey (HBS)
of 2002. It consists of M = 8025 households. The sampling design, close to the real
HBS design in 2002, is used for the simulation study. Population is divided into 7 strata
by the place of residence: 5 cities, the rest of the urban area and the rural area. Using
the Lithuanian population register as a frame, a simple random sample of individuals
is selected in the first 5 strata. The households of the persons selected are included into
the sample. Because of unequal number of household members unequal probability
sampling design of households is obtained. The household inclusion into the sample
probability is

here M;, — number of individuals in the h-th stratum, nj, — sample size of households,
xpj — J-th household size, h =1, ..., 5.

Two stage cluster sampling design is used in the 6-th and 7-th stratum. Sampling
without replacement with household inclusion probabilities proportional to the cluster
size 1s used at the first stage and sampling design like in the first 5 strata is used at the
2-nd stage. The inclusion probability of the j-th household in the i-th cluster from the
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h-th stratum equals

(1) _(2) () hpMp; Q) MpiXpij
TChij =T0,. T, %, . = ———, T, . = ———
i) = *hi thij hi M, hij My,;

here nj — sample size of clusters, M}; — number of individuals in the i-th cluster, N,
— number of households in the population for A =1, ...,5 or number of clusters for

h=6,7 Mj = Z 1 Mp; — number of individuals, my; — household sample size in
the i-th cluster, x;;; — j-th household size in the i-th cluster of the A-th stratum. Total
response is supposed.

3. Parameter and its estimator

Let us denote study variable y — disposable income of the household, x — household
size, population totals

5 Ny 7 Ny Ly;
=D Vit D D Yhijs
h=1 j=1 h=6 i=1 j=1
5 Ny 7 Ny Ly
tx::Zthj +Yyyxhlj—ZMll“ ’
h=1 j=1 h=6 i=1 j=1

Lp; — number of households in the i-th cluster, M — population size of individuals.
Parameter of interest — income per capita — is expressed as a ratio of two totals:

4
R=2
Ix
and can be estimated by
1,
R=2Z
Ix

Horvitz—Thompson estimator ([2]) can be used for estimation of totals:

npj 7 Ny Ly

y—ZZ LYY =Y i Bo= ) dix,

h=1 j=1 Thj h=6i=1 j=1 hij kes kes

s — probability sample, sampling design of which is described in the previous section.

In order the estimates of the number of individuals in some population groups to be
equal to the real population constants, calibration of sampling weights is used ([1]).
This method allows us to construct the new weights w; which minimize the distance
function

_ 2
L(w, d) = Z (wk dkdk)

kes
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and by means of which the known totals ¢, of auxiliary variables z;, j =1,2,...,J
can be estimated without error:

D WLk =) 2jk =1

kes keld

10 auxiliary variables are used in the study. 7 of them mean the number of individuals
in the household belonging to the corresponding stratum. Other indicate the number of
individuals in the household belonging to the corresponding age group 5-24, 25-39,
40-60.

Let us denote estimators

?(cal)
"(Cal) — Z Wk Vi, ;;cal) = Z Wi Xk, R(Cal) A(cal)

kes kes

The estimator of the ratio R is complex because of sampling design and estimation
method.

4. The eStimators of the variance of ﬁ(cal)

4.1. The “true” variance of R(cab)

Letusdenote by sg, k=1, ..., K all possible samples under the given sampling design

and p(sg) — the probability the sample s; to be selected. According to the definition

the variance of the estimator i?\ (cal) is a measure of the variability of its values I/Q\I(Ccal)

K
Var RaD — E( Rla) _ g R(cal) Z ’\(cal) _E R\(cal))z p(se).
| P

It can not be calculated in practice because of big number K of all possible samples.

For this reason its approximation is used. B = 1000 probability samples under given

sampling design are selected and estimates of the ratio 1’3\,5“’1), b=1,..., B calculated.

Their sampling variance

B B
Z ’*(cal) cal)) cal) Z cal)
~B-1 ’

b=1

is considered as “true” variance of R(€4): Vqr R(cal) =~ Vi.

4.2. Traditional variance estimator

Using Taylor linearization method the variance of R“) can be expressed by

! 7, 1 1 1
Var R = Var(ﬁ{cal)) Var("(ca) R’t;ca )).
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Let us denote 6 = A(C“l) — R7“D _ the estimator of the parameter § = t, — Rt,. For
two stage sampling de&gn and estimator 8 of parameter 0, the variance

Var 0 = Var(EQIil) +E(Var 9|i1) ~ Var (E9|i1)
with the 1-st stage sample i; can be estimated by
Var 8= Var,0,
here variance Varj is the variance of & under the 1-st stage sampling design. For this
reason the estimator

Var R(Cal) — ;_z—varl tycal) _ R’t\ical))

X

is used to estimate Var R,
Evidently this estimator underestimates the variance. The aim of the simulation
study is to get to know how big the underestimation is.

4.3. Random groups method

Using the random groups method ([2]) the initial sample is divided randomly into
A =4 groups composed of the elements of all strata. This procedure is applied to the
1-st stage elements, so each of the clusters is included into the group totally.

For each of the group the values I?ffal) of the parameter R are calculated, a =
1,..., A. They are identically distributed, but not independent. Their average is

A(Cal) Z R(cal)

with the variance

1 A a2
Var R A(C“l) = — Z ar R4 —
A2 a A’
here o = Var RV . Estimator

A

7. pleal) _ I _ pteab) 2

Var Rea” = A(A--l)Z (R0 = Reg')
a=1

Table 1. Composition of the random groups

Group: 1 2 3 4 5 6 7

Number of the 1-st stage elements
in the sample: 80 56 24 20 16 8
in the group: 20 14 6 5 4 2 6
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is used to estimate Var 6. This estimator is biased.

4.4. Jackknife method

There are A = 228 first stage sampling elements in the sample. Foranya =1, ..., A,

the a-th first stage sampling unit is deleted from the sample, and estimator R ((f;;ll) of R
is calculated using the rest of the sample. Afterwards the pseudo-values

R:(lcal) — nﬁ(cal) —(n — I)R((((;;d),

a=1,..., A are calculated and alternative estimator for R is build:

A(cal) l
fack = ZR““’

Estimator of its variance

7

np
pical) np\np—1 BHlcal) D(cal))2
Var Rjzee = Z(l_Nh) 2 (Ray — R<)
h=1 =1

1s used to estimate the variance Var R R(cal). Var ck R Rca) — Var R lk and called

jac
the jackknife estimator ([2]). Here R (hi ) ) means the estimator of R obtained when the
i-th first stage sampling unit from the A-th stratum is deleted.

4.5. Mirror match bootstrap

Mirror match bootstrap ([3], {4]) is applied in subsequent steps:
1. The simple random subsample of the first stage sampling units of size

"Z=[ o ]<nh,
2— fn

Sfn =np/Np is drawn from the initial sample of each stratum.
2. The elements of the subsample are replaced in the sample and the 1-st step is
repeated random number K, of times:

P(Kp=kn)=pn, P(Kpn=kn)=1- ps,

] 1

np(l — f7) B Fur
kh1=[n*(1_fh)], kno =kp1 +1, pp= klh k"‘ll , R =ny/n,
h h knt k2
h=1,2,...,7. Thus, the new sample in each of the stratum of size mj, = K,n* 5 18 Ob-

tamed Wthh is called the bootstrap sample. Let us denote the values of study variables
of the bootstrap sample

* * * *
yhl”"’yhmh’ xhl,...,thh.
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Table 2. Bootstrap sample sizes and sampling fractions

Stratum Number of N o fn ont fr Kn Kl
1 1163 1163 80 007 27 034 2 54
2 781 781 56 007 19 034 2 38
3 338 338 24 007 8 033 2 16
4 295 295 20 007 6 030 3 18
5 250 250 16 006 5 031 2 10
6 2091 20 § 040 4 050 3 12
7 3107 66 24 036 8 033 3 24

Estimates of the population totals 'fﬁcal)*, /f{xcal)* are calculated using this data and pop-

ulation ratio R is estimated by bootstrap estimator R€@)* = 7icab* /cax,

3. Steps 1 and 2 are repeated B = 100 times, estimates of the ratio R fcal)*, e
I?g'al)* are obtained. The variance Var R of the estimator R““) is estimated by

the variance of the estimator R €*)* of R
Var*k‘(cal)* — E*(ﬁ(cal)* _E, ie\(cal)w()2

under the bootstrap sampling design or by its mirror match bootstrap estimator

B B
(cal) _ (cal)x _ p(cal)* (cal)x __ (cal)x
VaryumR“™ = — b§~1: (R REDr), R = ;—1: Rl

The choice of sample sizes and sampling fractions of the simulation study is presented
in Table 2.

Simple random subsampling in strata is used in the simulation despite the original
sampling design in the strata is with unequal probabilities.

5. Simulation results

There were drawn 100 samples from the population under the given sampling design.
The variance estimates of the estimator of the parameter of interest where calculated
in each case.

R Let us define a relative bias of the estimator of the variance of the estimator 9 =
R(cal)

: . o——n Var9-Varf
Relative bias (Var0) =

Var9
V(Var® — Var0)2 + Var (Var9)

Relative MSE (\7a\r 0) =

Var9
Summary of the estimates obtained is presented in the Table 3.
Variability of the estimator due to the first stage sampling design is investigated.
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Table 3. Estimates of the variances Var R€D of the estimators

Method Average Min Max Variance Rebli:g;ve Rﬁ,létg c
“True” variance 160.51
Traditional 112.48 49.60 268.69 1944.52 -0.30 0.41
Random groups 188.68 1.82 129947 34197.96 0.18 1.17
Jackknife 144.58 85.69 283.47 954.83 -0.10 0.21
Bootstrap 218.30 119.66 297.94 2312.31 0.36 0.46

Following conclusions can be made:

1. The “true” variance of the estimator of income per capita is underestimated using

traditional estimator.

2. The variance of the estimator of variance obtained with the random groups
method is unacceptable big. The small number of groups (only 4) can be reason
for this.

. The MSE of the bootstrap estimator is quite big.

4. The estimator of variance obtained using jackknife method has the smallest MSE

and seems to be the mostly acceptable.
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REZIUME

J. Cimzaité, D. Krapavickaité. Sudétingo ivertinio dispersijos vertinimas

Sio darbo tikslas — itirti kartotiniy im¢iy metody taikymo galimybes netiesinio sumy atZvilgiu paramero
ivertinio dispersijai vertinti, esant sudétingam imties planui.

Naudojant realius oficialiosios statistikos namy akiy tyrimo duomenis, vertinama vieno namy ikio
nario vidutiniy pajamy iverCio dispersija, naudojant tradicini, atsitiktiniy grupiy, dZeknaifo ir butstrepo
metodus. Darbas padés parinkti tyrimui tinkamiausia dispersijos vertinimo biida. Nagrinéjami metodai
gali buti taikomi ir kituose sudétinguose im¢iy tyrimuose.



