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A limit theorem for partial weighted sums of regression
residuals
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Abstract. Let a linear regressionbe given. We consider the polygonal line process of weighted least squares
residuals. We prove a limit theorem in Holder spaces for this process. This extends the results of Jandhyala
and MacNeill, Bischoff, RaCkauskas.

Keywords: linear regression, regression residuals, partial sums process, limit theorem, Holder space.

1. Introduction and results

Let us introduce some notations.
Let f: [0,1] — RY be a given function f(t) = (f1(?),..., f2(0)%, t €[0,1],
where transpose is denoted by the sign *.

Let us define the matrix X,, = (f(1/n), f(2/n),..., f(n/n))".
Throughout we assume

matrices A, = %X,’IX,, and
{ A= fol f @) fT(r)dt are non degenerate. (h
Our regression model is
yi=f"G/mB+ej, 1<j<n, (2)
where €1, ..., &, are i.i.d. with mean zero and finite variance o2 > 0. Regression co-

efficients are estimated by the classical least square estimator /ﬂ\ = (X nX ,,)—1 Xy,
where y = (y1,...,¥n)". The residuals € = (¢y, ...,%,)" are defined by

B=y—Yk=y— fG/MB, k=1,...,n.
Let r: [0, 1] — R. Define S(0) =0 and S(k) = ¥, r(i/n)&, k=0,...,n.
Let us consider the polygonal line process

V() = S(nt) + r(((nt] + 1)/n)Euys1 (nf — [ne]), €0, 1], 3)

For continuously differentiable f, r = 1, MacNeill [5] established weak conver-
gence of n~1/%2¢ 1 Vn in the space C[0, 1]. As a corollary from Bischoff [3] it follows
that this convergence is true for functions f that are continuous and of bounded varia-
tion. Jandhyala and MacNeill [6] extended this result for continuously differentiable r.
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Py

The limiting process of n~1/26=1V,, is

ot ool
V(t)=[ r(u)dW(u)—/ / rw)fT WA f(v)dW (v) du, (4)
0 0 Jo

where W (t) — Wiener process. The covariance kernel of this process can be expressed
as

min(z,s) t ps
Kg(s,t)= / rz(u) du — / / r(u)r(v)ft(u)A_lf(v) du dv.
, 0 0 JO

We associate to « the separable Holder space HS[O, 1] equipped with the norm
lx]l,. An obvious requirement for Holder spaces we consider is that Wiener process
W exists in HO[0, 1]. This is true when 0 < & < 1/2. For more on Holder spaces see
for example Rackauskas and Suquet [2]. |

‘Next for the model (2) we introduce the admissible class of functions f. The p
variation on [a, b] C [0, 1] of function g: [0, 1] — R4 is denoted by V[a,b],p(8)- We
denote the variation on [0, 1] by omitting the interval notation, i.e. v,(g). The space
of bounded functions g: [0,1] — R4 of finite p variation is denoted by Vg [0, 1]. This
space is equipped with the norm || g|[( ;-

Rackauskas [1] extended MacNeill [5] result in H(g [0, 1] for r = 1, f continuous
and of p bounded variation. Necessary and sufficient condition was

lim tP(le;] > ¢'/*7%) =0.
[—00

Our main result reads as follows.

THEOREM 1.1. LetO<a <1/2and 1 < p < 1/(1 — ). Assume for the model (2)
that the functions f and r are continuous and have finite p variation. Then

L9 P v HYW (5)
ﬁg " N—->o0 ok at= ’

lim tP(le)] > t'/*7%) =0. (6)
[—>00

Before we proceed with the proof some remarks are in order here.

Remark 1.1. The unknown variance o2 in (5) can be replaced by its estimator

1 n
~2 ~2
— 8 . 7
[0 " kE_l X @))

Remark 1.2. Condition (6) yields E |e1]9 foreach g < 1/(1/2 — ).

Remark 1.3. On the other hand E |&;|1/(1/2=9) yields (6).
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Remark 1.4. Due to continuity of the embedding H(? [0, 1] — C[O0, 1] we obtain the
following result.

COROLLARY 1.1. Assume that the functions f and r are continuous and have
finite p variation for some 1 < p < 2. Then the convergence

1 -~ _
N ijgo V in space C[0, 1], (8)

holds provided that E |e1|? for some q > 2p/(2 — p).

2. Proof of the main theorem

Here are some useful lemmas before we proceed with the proof of our main theorem.

LEMMA 2.1. Let p,gq 21 and 1/p + 1/q > 1. Let s,t such that [s,t] C [0, 1].
If g € Vg [s,t] and x € Vq1 [s,t] then the integral f : gw)dx(u) is well defined in the
Rieman-Stiltjes sense and there exists a constant Ky > 0 depending on d only such
that

t
1
/ gu)dx(u)| < Ky ”g“[p] ' U[s/,?],q(x),
A

Proof. The sign [s,t] by the norm and variation means that they ar calculated in
this interval. This lemma is a simple corollary from L.C. Young [4].

LEMMA 2.2. Embedding Hg [0,1] — Vll/a[O, 1] is continuous.
LEMMA 2.3. Embedding Vg[O, 1] — V;l, [0, 1] is continuous when p’ > p.
LEMMA 2.4. Ifp'>pandg € Vg[O, 1] then

gl < gl + 2(p,_p)/plvll,/p,(g) ||g||éﬁ"”)/”' :

Proof. Since p’ > p then by Lemma 2.3 we get g € V;I, [0, 1]. Therefore

m

vy(g)= sup Y lgt)—gt-1I”1gt) — gt—)I” 7P
(w)<l0.1]

< (2llgleo)” v, (g).

Hence

1 ! !/ /71 4 /I_ /
”g||[P’]=”g”oo+vpf/p (g) < ||g||00+2(1’ p)/p vp/p (2) ||g||((£ 204
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LEMMA 2.5. Ifx € HO(B[O, 1] then vis 1,1/ (x) < (wo (x, 1 — sV — ).

Proof.
m
X (tx) — x (1) 1\ 1/
Uls,t],1/a(X) = sup ( = ) [t — ti—1]|
)Cls.t) oy e = k1
|x () -—x(s’)|)1/a e
< sup sup - > |tk — t—1|
- <0<t’——s’<t—s lt/ - Slla ) Cls, 1] g
= (a)a (x,t ——s))l/alt — 5.

LEMMA 2.6. Ifx € HO[0, 1] then v 1.1 /a(x) < Ix 1 |t — s].
Proof. 1t follows from the definition of the norm and Lemma 2.5.

Now we are ready to begin with the proof of the main theorem.

Proof (of Theorem 1.1). Set r,(t) = r(([nt] +1)/n).
Because

vp(ra) < sup Y lrtk/n) —r(/m)IP < vy(r) < o0
,_ =ln 1

we have r, € VI} [0, 1] and

1 1
Irallipy = ralloo + v/ ) < Irlloo + v/ P(r) = Irll 1 (9)

Now we define operators M,

M0 = | a0z (@) (10)
and M O |
M(x)(t) = /O rwdr@) an
on H2[0, 1]

It follows from Lemmas 2.2 and 2.1 that both integrals f(; rn(u)dx(u) and
fot r(u)dx(u) are well defined in the Rieman—Stiltjes sense.
Lets check that both operators M,, and M map HS [0, 1] into itself.

IMa(O)(@®) = Ma () (s)] s )z (@)

|t — 5| It — s|”
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By using Lemmas 2.1 and 2.5

t
’j:v r”(u)dx(u)l Ky |r, “[p] Uﬁ"t],]/a(x)
sup = < sup @
O<t—s<$ |t — s O<t—s<d |t — s
K llrnllpy ((@q 2 =50 |t —s])"
< sup nllip) (@ — ) < Kq lirnllpp) @a (x,8) .
O<t—s5<d |t — SI

Since wy (M,(x),8) — 0 when § — 0, it follows M, (x) € HS[O, 1] when x €
HQ[O, 1]. The proof for M(x) € HO?[O, 1] when x € HO?[O, 1] is analogous.
It can be easily checked that for the line process (3), for all ¢ € [0, 1]

V.,(t) = M, V, (), (12)

where V,, (1) = ZKm Ek - + E[nr)+1(nt — [nt]).
The limiting process V defined by (4) can be rewritten

V(t):MV(t), tel0,1]., (13)
where
t 1
Vit)y=W({) — / / ft (u)A”lf(v)dW(v) du. (14)
0 JO
Rackauskas has proved in [1] that condition (6) is necessary and sufficient for
1
° %0, 11.
no N—>00

Due to the representations (12) and (13) it sufﬁces to check that M WX, — Mx in
the space H O[O 1] for any sequence (x,) C H [0,1] and any x € H [0, 1] such that
xp —> x. This easily follows from uniform convergence M, — M Wthh we are going
to check.

Because r is continuous we have

\rn, — rlloc = 0, when n — oc. (15)

Let p’ > pbesuchthat 1/p’ +a > 1 (notethat 1/p + « > 1) and let ¢ = 1 /. By
Lemmas 2.2, 2.3, 2.1 and 2.6 for all s, ¢ € [0, 1] we have

t |
IMnx(t) — Mx(t) — M,x(s) + Mx(s)l = / (rn(u) — r(u))dx(u)

<Killra =l v )
< K1l = rllgpy I lg It —s1* .
It follows
IM, — Ml < sup Ky llre =l Ixlle < Ko llrm =7l

Ixlle <1
O<t—s<1
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By Lemma 2.4 for the function r, — r and condition (15) we get

My, — M| =0 (16)

lim
n—>0o0

which completes the proof.
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REZIUME

Vytenis PaZemys. Regresijos liekany daliniy svertiniy sumuy, ribiné teorema

Straipsnyje nagrinéjama tiesiné regresija ir tokios regresijos liekany daliniy svertiniy sumy ribinis elgesys.
[rodoma teorema apie tokiy procesy konvergavima Hiolderio erdvése. Si teorema apibendrina Jandhyala ir
MacNeill, Bischoff, Rackausko rezultatus.



