Liet. matem. rink., 44, spec. nr., 2004, 589-593

Power analysis of dyadic increment (DI) statistic

Danas ZUOKAS (VU)

e-mail: danaz78 @one.lt

1. Introduction

Let Xy,..., X,, be a sequence of independent binomial random variables with
PXi=1)=u;, PX;i=0=1—pu;, 1=1,...,n.
We want to test the null hypothesis of a constant occurrence probability,

Ho: 1 ="+ = pn := o,

under the following so called changed segment (or epidemic) alternative Ha: there
exist integers k* and m*, 0 < k* <m™* < n, and ua # o (1o, ua € (0, 1)) such that

. — —_— I’LA) ie{k*+1,-"’m*}’
P(X’"l)"{uo, i€l \ (K +1,...,m*).

Here k* stands for the beginning, m* the end, I* = m* — k* the length of epidemic.
The quantity |ua — po| is referred to the size of epidemic. If the null hypothesis is
rejected, the next step is to estimate the parameters of the epidemic: [*, k*, m*, g
and pa. We deal only with the hypothesis testing problem. Note that the problem of
epidemic change in an occurrence probability can also be reformulated in the terms of
epidemic change in the means of observations, because EX; =P(X; = 1) = u;. And
so all the methods for testing epidemic change in the means can be applied. The most
common ones are the maximum likelihood and those based on cumulative sums.

For a short survey of epidemic change problem we refer to Csorgd and Horvath [2],
where basically the cumulative sum type test statistics to test for epidemic change in
the mean of random variables are discussed. We also refer to Yao [6], where several
statistics of different types are analyzed in the case of normally distributed observa-
tions. The problem of a changed segment in a binomial sequence was considered by
Curnow and Fu [3] and Avery and Henderson [1]. Several cumulative sum type statis-
tics were introduced by Rackauskas and Suquet [5] for the sequences of random ele-
ments with values in abstract measurable spaces. The distinct feature of these statistics
is certain weight functions p from some class R (see [5] for the definition), which,
when changing the parameters of the weight function, allow to detect epidemics of
various lengths.
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In the next section we present DI statistic, formulate the theorems of convergence
under Hgy and consistency for this statistic and give the critical values. Then we inves-
tigate the influence of the parameters of epidemic and weight function to the power of
DI statistic. We end up with conclusions.

2. Dyadic increment statistic

We refer to [5] for details. Denote by D; the set of dyadic numbers in [0, 1] of level j:

Do=1{0,1}, D;={@I—-1277; 1<I<27"}, j>1 (1)

Forr € Dj, j 20, denote r~ =r — 27/ and rt=r +27J. If we set S(0) =0 and
St = Zi<, X;,0<t<n,then X = S(n)/n and the dyadic increment statistic is

DL (o) 1 S(nr) S(nr=)  Srt) 2)
= — — max — max|S(nr) — — :
T WX A= X)) 1520 p27Y) reD) 2 2
In our analysis we use the following expression of the weight function
p(h) = p(h,a, B,y) =h"logP(y/h), 0<h<l. (3)

This is a proper weight function if either ¢ € (0,1/2) and Be Rora=1/2 and 8 >
- 1/2. We also analyze the case where « =0 and 8 = 0 (no weight function used).
The problem with using the parametric weight functions is that there is no strict rule
for assigning certain values to parameters. It therefore remains interesting and open
theoretical question of data driven choice of parameters.

Let (W(z), t €[0, 1]) be a standard Wiener process. The distribution of

I 1
W) =W () =W ()] (4)

1
DI(p) = sup — max
i>1P@277) reD;

serves as limiting distribution for DI statistic under Hg. This is formulated as a theo-
rem.

THEOREM 1. When Hy holds and p is as in (3), then DI, (o) n_—f’; DI(p).

This theorem is a special case of a more general result proved in [5] for any se-
quence of independent identically distributed random variables and weight function p
from a broader class K.

Proof. Since in the special case of binomial random variables X (1 — X) is an esti-
mate of the variance of X, the result follows from Theorem 3 and Remark 2 in [5].

Next assume that /* and n — [* tend to infinity with n — 00. For the consistency of
statistic DI, (o) we formulate Theorem 2.
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Table 1. The critical values

a=0 a=1/8 a=1/4 a=3/8 a=1/2 a=1/2
B=0 =0 B=0 B=0 B=1 B=0.6
a; =0.10 0.8864 1.0124 1.1930 1.5310 0.7460 1.0400
ay = 0.05 1.0163 1.1441 1.3210 1.6430 0.8510 1.1410
ay =0.01 1.2965 1.4316 1.6070 1.9010 1.0830 1.3810

THEOREM 2. Suppose that Ha holds and p is as in (3). Moreover, assume

i nl/zhnll'LA — Kol
lim -

, 5
n—>00 p(hy) > (%)

where b, = (I*/n)(1 — I*/n). Then DI, (p) n;’%o 0.

The proof of this result goes along the lines of the proofs of Theorem 4 in [5] and
Theorem 2 in [7] and is omitted due to length restriction for the paper.

We can now give the argument pro the weight function. Assume for a moment that
I*/n — 0. If « =0 and B8 =0, condition (5) reduces to I*/n1/? - o0, i.e. the length
of epidemic should tend to infinity faster than nl/2 for consistency of the statistic.
Similarly, when « < 1/2, 8 = 0, I* should significantly exceed n(1—20)/(2=20) For ex-
ample, taking o = 1/4, the length of epidemic should be such that nl/3 = o(I*). Thus
when using the weight function we have the possibility to detect shorter epidemics.

The major advantage of DI statistic is that the exact analytical form for the distri-
bution of DI(p) is known. We can therefore find precise critical values associated with
the certain significance level . In Table 1 critical values are given for various « and S
(furher we fix y = exp(1)).

3. The power analysis

First we investigate how the power of DI statistic depends on [*, n, ug, ua and k*.
We choose p(h) = h* (8 =0) and ¢ = 1/4 in (3). The convenient way for power
analysis is the so called size-power curves on a correct size-adjusted (not nominal
size) basis (see Davidson and MacKinnon [4]). For every set of parameter values we
compute 10000 replications of the statistics and the corresponding p-values first for the
sample with no changed segment then for the same sample but now with the changed
segment at {k* + 1,...,m*}. We plot the empirical cumulative distribution function
for p-values under Hpy (which is the empirical power function) but on x-axis we have
the values of empirical distribution function for p-values under Hp instead of nominal
size a;. That is we adjust the power to size. The results are presented in Fig. 1.

First let I* increase all other parameters keeping fixed. From Fig. 1(a) we see that
the power increases quite rapidly. Next, we take k* = n/2. From Fig. 1(b) we conclude
that the power decreases with n increasing because the length of epidemic relatively to
the number of observations decreases. Increase |ua — |- We see in Fig. 1(c) that the
power increases and again very quickly. We observe rather interesting effect, which
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Fig. 1. The adjusted size-power curve plots.

was mentioned in Avery and Henderson [1]. Namely, that shifting both wg and pa
without changing |ua — wo| (keeping other parameters fixed) decreases the power.
Fig. 1(d) illustrates this effect. Figs. 1(e) and 1(f) demonstrate that the beginning of
the epidemic has no impact on the power of the statistic as long as there is some level
J of dyadic splitting and some r from D; (see (1)) when whole epidemic is located
between nr and either nr~ or nr* and the length of the epidemic is comparable with
n2~J . Indeed, from (2) we see that, when testing for the epidemic, we take differences
of partial sums of n2~/ observations to the left and to the right of nr. So if, in the worst
case, the middle of the epidemic is right on nr and the length is n27/ then statistic may
not detect it. Of course, at some higher level of the dyadic splitting it will nonetheless
detect the epidemic but it will be shorter and hence harder to detect.

We also analyze the impact of the weight function p (as in 3) to the power of the
DI statistic. In our next numerical simulations we fixed n = 100000, {* = 1000, k* =
50000 and po = 0.1, ua = 0.2. For various « and 8 we have computed the values of
the empirical power function for significance levels oy = 0.1, 0.05 and 0.01. In Table 2
we present the results of simulations.

From Table 2 it is clear that numerical simulations confirm the theoretical reasoning.
Take for example ay = 0.05, which is the typical significance level in most practical
applications. If we do not use weight function, we detect only about a quarter of epi-
demics (2560 out of 10000 in our calculations) compared to almost all cases when
taking « = 3/8 and B = 0. Even more impressive results are for smaller significance
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Table 2. The power of the DI statistic for vartous @ and 8 values

a=0 e=1/8  a=1/4 o =3/8 a=1/2 a=1/2
@ =0.10  0.4259 0.6745 0.9685 0.9991 0.8823 0.9972
a0 =0.05  0.2560 0.4035 0.8962 0.9965 0.6349 0.9870
as = 0.01 0.0781 0.1008 0.5033 0.9708 0.1231 0.8595

level a5y = 0.01. The case @ =0 and 8 = 0 demonstrates almost no power while the
case « = 3/8 and B = 0 detects about 97% of the epidemics.

4. Conclusions

Even for large n the computation of DI, (p) (defined in (2)) is very quick. The distri-
bution of DI(p) is known therefore the precise critical values can be found. DI statistic
is a powerful tool and numerical simulations support this statement. These are the
main advantages. As a drawback we can point that this statistic is too rough to esti-
mate the length or the beginning of the epidemic. Also the choice of the parameters
of the weight function is not determined. Moreover the location of the epidemic can
be very important for the power of statistic. Concluding, DI statistic can be effectively
used when for the large number of observations the presence of a changed segment is
tested and estimating the parameters of the epidemic is not required. The computations
usually are very quick.
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REZIUME
D. Zuokas. Diadiniy prieaugliy (DI) statistikos galios analizé

Siame darbe nagrinéjamas epideminio pasikeitimo binominéje sekoje uzdavinys. Siam uZdaviniui suformu-
luotos diadiniy prieaugliy (DI) statistikos konvergavimo ir suderinamumo teoremos. Monte-Karlo metodu
tiriama DI statistikos galia. Rezultatai rodo, kad §i statistika tinka tirti ilgas binomines sekas, kai reikalinga
(greita) i3vada apie tai, ar yra epideminis pasikeitimas, toliau nevertinant epidemijos parametry.



