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1. Introduction

Commonly Bayesian approach is applied to update estimated parameters of stationary
process when more statistical information becomes available. Because of failure rate
Increasing, in the ageing models the processes become non-stationary. In such case
available statistical data can not be used for updating failure rate of previous time
period, because it represents the other state of equipment.

Sometimes approximate failure rate dependence on time for the particular groups
of equipments is priory known. The parameters of this dependence are stationary vari-
ables. However prior information can lead some uncertainty and they are assumed
as random variables with prior probability distributions. These distributions (and also
variation expression of failure rate) are updated by Bayesian approach using available
statistical data. |

The authors did not succeed to find any examples of that method in literature. There-
fore this paper presents the main idea of developed algorithm and numerical example.

In order to estimate time dependent random parameters the iterative process based
on Bayesian approach was used. Reliability estimates when new statistical data be-
come available could be updated by using Bayes theorem:
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where p(6 | E) — the posterior distribution of parameter 6 in light of statistical data E:
p(6) - the prior distribution of parameter 8; L(E | 8) — the likelihood that statistical
data E would be observed if value of random parameter was 6.

In general, applying Bayesian approach various formal techniques are used in or-
der to estimate posterior distribution, however most of them are too complicated for
practical computations. Depending on likelihood function, some prior distributions can
always lead to posterior distribution, which has the same functional form as the prior
distribution and this functional can be computed analytically, i.e., without introducing
numerical error. This useful statistical property is related with so-called conjugate pair
of prior distribution and likelihood. Using the conjugate pairs the mean and variance as
well as other parameters can be easily estimated for posterior distribution in case prior
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distribution parameters are available. Thus such conjugate pairs are also proposed to
be used in considered iterative estimation of reliability parameters [2,3].

2. Iterative estimation

Usually statistical data of modelled object became available partly and Bayesian ap-
proach has to be applied iteratively in order to update prior distribution. In this case,
analytical expression of posterior distribution is very useful. Considering reliability in-
formation the Beta, Gamma, Normal, Lognormal and others distributions are used as
reliability parameters distributions. It is easy to prove that some of them are conjugated
and can be updated iteratively as shown in the following examples.

Example 1. Lets assume that the statistical data is given, i.e., y; = (k;, i), | =
1,...,n, where k; is the number of failures during period t;. Besides, the number of
failures has Poisson distribution with unknown parameter A. The prior distribution of
unknown parameter A is modelled as Gamma distribution with the density function
denoted as

b
a b—1

F(b)x e =g(x,a,b), a>0, b>0. (2)
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Using Bayes’ approach prior density function of random parameter A after j iterations
became posterior:

px | y; yi)= px|yi,...,yj-)L(yjlx)
T R b iy yj—1)L(yj lu)du’

(3)

i.e.,
p(x |y,-,...,yj)=g(x,a+t1+...+tj,b+k1+...+kj). 4)

Posterior distribution, which is obtained using Bayes’ approach belongs to the
same parametric distributions family as prior. This means that Poisson likelihood and
Gamma distribution are conjugate pair.

By analogical calculation another four conjugated pairs of probabilistic distribu-
tions were obtained:

Ga(a,b) — Ga(ag, bg) (parameter a of Gamma distribution is modelled by prior
Gamma distribution);

B(p) — Be(a, b) (parameter p of Binomial distribution is modelled by prior Beta
distribution);

N(u,0) — N(mo, o) (parameter u of Normal distribution is modelled by prior
Normal distribution);

Logn(u, o) — N(uo,00) (parameter o of Lognormal distribution is modelled by
prior Normal distribution).

Usually before the estimation of random parameters some statistical data y;, i =
1,...,n (n — number of observations) are already collected. If data are obtained pe-
riodically we can estimate iteratively in order to update posterior distribution by all
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available data. It was observed, that new information can be joined into the prior dis-
tribution in two ways: using Bayes’ approach iteratively or in one final step. The result
is the same in both ways.

Example 2. Lets assume that the distribution of statistical data y; = (k;,t;), { =
1,...,n (where k; is the number of failures during period ¢;) is Poisson with unknown
parameter A. Define T; =, +... +¢t; and K; = k; + ... +kj, j=1,...,n. Inthat
case, probabilistic distribution of K is Poisson with parameter AT;. Random param-
eter A is modelled by Gamma distribution like in example 1. After one iteration using
Bayesian approach we have posterior A distribution with density function:

px|K;,Tj))=gx,a+T;,b+Kj). (5)

This is the same posterior distribution as in example 1. So the data integration re-
sult (posterior distribution) is the same regardless of whether it has been obtained
iteratively (by applying Bayes’ approach in steps) or in one step (by applying Bayes’
approach to cumulative information). It should be noted that all probabilistic distri-
butions (not only conjugated) which are obtained using Bayesian approach have the
same property, if the assumption that considered parameter (1) don’t depend on time,
1s used. In this case the data integration in one step is very useful for prior distribution
practical development.

3. Time dependent failure rate

In this section the case when random parameter represents non-stationary process is
considered. Using such parameter there is possibility to model the ageing process.
Usually ageing process is described by failure rate defined as time function A(¢). Let’s
assume that failure rate function has one unknown parameter with some prior dis-
tribution. Then prior distribution can be updated by statistical data applying Bayes
approach. However, it should be noted that A (¢, a) is used instead of A(¢) in likelihood
function and Bayesian approach is applying with regard of unknown parameter a. In
that case our result is posterior distribution of parameter a. Let’s assume the failure
number k;, 1 = 1,2, ..., n, follows Poisson distribution with time dependent failure
rate A(i) = ai, a > 0, where unknown parameter a has probability distribution with
density function p(x). Using Bayes’ approach posterior distribution of parameter a is

p(xlkr, ... kj) === — (6)
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where [; _LLz——l, K; _Z:lk,,j_l,...,n.
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Usually the empirical mean of failure rate is calculated only in engineering relia-
bility estimations. When failure rate depends on time, such estimations can lead high
level of errors. Especially it is important when rare events are considered and avail-
able failure statistics are not enough. This situation is typical in reliability estimation

for nuclear energetic objects. In this case, the prior information of failure rate or the
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distributions of others parameters are very important. Generic statistic data of similar
nuclear object failure are collected in T-book [5], and such information can be used in
estimations as prior by applying Bayesian approach.

In this section numerical example of modeling is presented. Let’s assume, that fail-
ure number k;, i = 1,2,...,50, in the i-th interval of time 1s simulated by Poison
distribution with parameter A*(i) = ai. For simulation k; the value of parameter a is
chosen a = 0.05. Prior distribution of unknown parameter a is assumed as Gamma
with parameters ;. = 2 and n = 0.5 in the mathematical model. Then density function
of parameter a distribution is

20.5
I'(0.5)

p(x) = x5 le™2% = g(x,2,0.5). (N

Posterior distribution of parameter a is estimated using simulated data of failure
number ki, ks, . .., kso in time intervals [0; 1], (1; 2], ..., (49; 50] and formula (6). So
density function of posterior distribution 1s
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Fig. 1. Calculated estimations of parameter a. + — calculated estimations of parameter a using Bayesian

approach; < — calculated estimations of parameter a using least squares method; — — true value of
parameter « (i.e., a = 0.05).
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and the mean of parameter a is

05+K; .
4; = E(xlky, ... k) = 2:[ C i=1,2,...,50. (9)
l

Usually least squares method is used to valuate parameter a in engineering estima-
tions, when the dependence function is known beforehand. The obtained estimations
of parameter a using Bayesian approach and least squares method are presented in
Fig. 1.

The results of considered numerical example show that calculated unknown param-
eter estimate using Bayesian approach is more precise then the other one calculated
using least squares method in this case.

4. Conclusions

The pairs of probabilistic distribution: Poisson — Gamma, Gamma — Gamma, Binomial
— Beta, Normal — Normal and Lognormal — Normal are conjugated and can be applied
in estimation of reliability parameters without numerical method error. Bayes approach
allows update initial reliability parameters iteratively or in one final step.

The method how to estimate parameters related to an ageing process is presented
in this paper. Using numerical example it was shown iterative estimation of reliability
parameter applying Bayesian approach. And calculated results were compared with
the other ones calculated using least squares method.
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REZIUME

J. Augutis, 1. Zutautaité, E. Augutiené. Senéjimo modelio parametry vertinimas naudojant Bajeso
metodq

Siame straipsnyje nagrinéjamas jungtiniy tikimybiniy skirstinig pory taikymas patikimumo parametry
ivertinimui Bajeso rekurentinéje formuléje. Sudarytas algoritmas senéjimo modelio parametry jvertinimui,
panaudojant Bajeso formule, ir pateiktas 3io algoritmo taikymo skaitinis pavyzdys.



