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Abstract. Environmental data usually depends on both spatial and temporal components. Therefore, it is
essential to have statistical models to describe how the data vary across space and time. Structural analysis
begins with estimating the space-time covariance or variogram. In this paper a generalised product-sum
variogram models has been fitted to the data of the Center of Marine Research by making use of Gstat
software.
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1. Introduction

Random process models for space-time data play increasingly important roles in var-
ious scientific disciplines; among them are environmental science, agriculture, clima-
tology, meteorology, and hydrology. In the statistical literature, the recent works of
Handcock and Wallis (1994), Kyriakidis and Journel (1999), Christakos (2000), Chris-
takos, Hristopulos, and Bogaert (2000), Brown, Diggle, Lord, and Young (2001), and
others, point at the significance of the approach. In order to estimate the correlation of
a space-time process, one of the main questions is how to choose a space-time covari-
ance or variogram model and how to choose parameters to ensure that the best fit to
data is achieved [7]?

In this paper the generalised product-sum variogram models has been described, in
order to estimate and model in a flexible way realizations of spacetime random fields
— salinity data of the Center of Marine Research) in each seasons. This generalized
model is non-separable, in general is non-integrable and is the simple method for es-
timating and modeling the covariance or variogram components of the product-sum
model using data from realizations of spatial-temporal random fields [6].

More about a various models of variograms, modelling and fiting variogram mod-
els, prediction procedures by various kriging, about others methods of geostatistical
analysis can be found in the book by J.P. Chiles, P. Delfine “Geostatistics: modelling
spatial uncertainly” [1], [2] (the last one in Lithuanian).

Basic concepts of space-time process are introduced in Section 2. Also the gene-
ralized product-sum model are presented and comments. The results of the study are
presented in Section 3.

*Darba finansavo Lietuvos valstybinis mokslo ir studijy fondas
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2. Basic concepts of space-time process. The generalized product-sum model

Let Z(s; r) be a random variable at the location s, in space, and ¢, in time, and let
{(Z(s;0): (s;1)eN?xN), be a second order stationary spatial-temporal random field,
with covariance and variogram, respectively:

Cyr(hy, 1) = Cov(Z(s + hy, 1+ 1), Z(s, 1)), (2.1)

Var(Z(s + hg, t + hy) — Z(s, 1))
2 b

Yse(hy, ft) = (2.2)
where (s; s + hy)eD? and (¢; t + h,)€T? [3], [4], [6], [7].

The classes of spatio-temporal covariance models are briefly described in literature
[2] (p. 106-109), [3], [4], [7]- |

The following class of product-sum covariance models was introduced by De Ce-
sare et al. (2001): |

Cy,t(hy, hy) =k Cs(hg) Ci () + k2Cs(hy) + k3Co(hy), 3.1
in terms of the semivariogram function:

Yor(hs, ) = [k2 + k1 C1(0) | vs(hy) + [k3 + k; Co(0) ]yi(hy) — kyvs(hy)vie(hy),  (3.2)

where C; and C; are covariance functions, ys and y, are the corresponding semivari-
ogram functions, and k1 > 0, k3 > 0, k3 > 0 to ensure admissibility. Note that Cs, (0, 0)
is the sill of y,; (“global” sill), C;(0) is the sill of y; and C;(0) is the sill of y;(C,(0)
and C;(0) are named “partial” sills) [3], [6].

A generalization of the product-sum covariance model introduced by De Cesare et
al. (2001) 1s given by the generalized product-sum model (De Iaco et al., 2001).

Yst(hg, hy) = ysr (B, 0) + 5 (0, hy) — kyst(hg, 0)ys: (0, hy), (3.3)

where y;, (hg,0) and (0, h;) are spatial and temporal bounded variogram functions
and

_ Gillysi(hy, 0) +51llys (0, hy) — sillys (hg, hy))

K (sillyg (hg, 0)sillyg (0, hy)) 5-4)
Since y (O) = 0, it follows that
Vst (hs, 0) = [k2 + k1 C1(0) |5 (hy) = kg v (hy), (3.5)
and
Pai (0, he) = [k3 + k1 Cs () ]v2 (h) = ki (hy), (3-6)

where k; and k; can be viewed as coefficients of proportionality between the space-
time variograms Y (hy, 0) and y,(0, h;) and the spatial and temporal variogram mod-
els ys(hs) and y;(h;), respectively.
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The coefficients ki, k3 and k3 can be solved in terms of the sill values Cg(0,0),
C,(0), C;(0) and the parameters kg, k;:

_ ksCs(0) + £, C,(0) — C4(0,0)

= G 0)C,0) ’ 1)
 C(0,0) — kG (0)
2T C;(0) ’ G-9
oo _ Cot(0,0) = kG (0) 59)
T C;(0) | '

In this case ki > 0, ko > 0, ks > 0 if and only if k satisfies the following inequality
([6] Theorem 2):

1
0<k<

«_ . , (3.10)
max {Sl”)’st (hSa O)a Slllyst (0, ht)}

Given the set of data locations in space-time
A= ((si,tj);i=1,2,...,n5 j= 1,2,...,n¢);

estimating and modeling the spatial and temporal components proceeds as follows [6]:

1. Compute the sample spatial and temporal variograms corresponding to ys (hy, 0)
and 5 (0, hy)

R 1 2
S hs,O = Z +hs, —"Z ’ 3 3-11
Vs (B, 0) 2wmmm%%£m[“ t) — Z(s,1)] (3.11)
. 1 2
st (0, hy) = Z(s,t+hy)— Z(s, , 3.12
Vs (0, hy) zwwmmm%&J:Gt ) — Z(s, )] (3.12)

where N (h,,0) and N (0, k;) are, respectively, the vector lag with spatial toler-
ance and the lag with temporal tolerance [2] (p. 107).

2. Choose variogram models yy, (h;, 0) and y;, (0, h,) for the above two variogram
estimators. Note that at this point, one must use models with sills. Hence estimates

for the sill values k;C,(0) and k;C,(0) should be obtained.
3. Compute the sample variogram corresponding to ys; (hy, h;), namely:

R 1 2
P (g, hy) = §: Z(s+hy,t+h)—Zs, )", (3.13)
ST mNmeummmm[ ’ ]

4. Estimate the global sill C;,;(0,0) graphically, by plotting the sample variogram
surface ps (hg, hy).

5. Once the three sills have been estimated, the value of parameter k is determined,
however one must check that (3.10) with y replaced by y is satisfied.
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4. Results

The Oceanology Department was established 01 June 1992 and devoted to mak-
ing observations of the circulation and transformation of water masses in the
Baltic Sea and in the Curonian lagoon. The main parameters measuring or esti-
mating are: temperature, salinity, density, water transparency and sea-ice condi-
tions. Some meteorological parameters, such as wind speed and direction, cloud
cover, air temperature etc., are also included in the standard set of observations
(http://wwwl.omnitel .net/juriniai_tyrimai/index.htm).

The data of depth, temperature and salinity were collected during the period
1994.02.12 to 2001.10.22 in every season. In this research only data of salinity was
used. All observed data were collected in 23 stations and their geographic coordinates
was transformed to Cartesian coordinates.

Since more than one observation of salinity is collected per day in the each sta-
tion, we take an average of them. In order to fit semivariograms we have chosen free
available software Gstat.

Exploratorary analysis of the time series data of the Center of Marine Research
showed that data have seasonal dependence (seasonality). The generalized product-
sum variogram models for each season are estimated by Steps 1-5 given.

In order to select the best semivariogram model, we try model linear, spherical and
exponential variogram models and calculated (weighted) sum of squared errors of the
fitted model. More about parameters of these variogram models and his parameters
can be found in the book by Cressie ,,Statistics for spatial data” [1], K. Dudinskas,
J. §altyté—-Benth “Erdvineé statistika” [2], in research [5].

We list the best chosen spatial (Table 1), temporal (Table 2) and spatial-temporal
(Table 3) semivariogram models for all seasons.

The coefficients ks and k; was chosen by conditions described in [6] and the coeffi-
cients k, k1, ko and k3 was calculated by formulas (3.4), (3.7), (3.8) and (3.9) (Table 4).

Table 1. Spatial semivariogram models for all seasons

Season Variogram model Co Ci R

Spring: Linear —0.0012 0.0769 1638.56
Summer: Exponentian 0.0224 0.0475 1353.65
Autumn:  Exponentian 0.0034 0.0581 1601.32
Winter: Linear 0.0303 0.1044 8242.96

Table 2. Temporal semivariogram models for all seasons

Season Variogram model Co Ci R

Spring: Linear 0.0399 0.0176 27470.50
Summer: Exponentian 0.0233 0.0266 36198.80
Autumn:  Exponentian 0.0287  0.0055 7521.57

Winter: Linear 0.0877 0.0329 12567.48
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Table 3. Spatial-temporal semivariogram models for all seasons

Season Variogram model Co C R

Spring: Linear 0.0935 0.0549 22986.40
Summer:  Exponentian 0.0879 0.0071 28712.40
Autumn:  Exponentian 0.0851 0.0354 16560.30
Winter: Linear 0.2077 0.0648 7795.36

Here Cop - the nugget effect, Co + Cj —the sill and R - the range of
the variograms [1], [2], [5].

Table 4. The coefficients of generalized product-sum variogram models

Spring Summer Autumn Winter
ks coeficient 1.50 1.25 1.50 2.00
k: coeficient 1.25 1.50 2.00 0.50

k) coeficient 0.0008 0.0007 0.0002 0.0058
k coeficient 1.0097 0.2872 0.8470 1.5758
k3 coeficient 0.6056 0.1528 0.8266 0.0259
k coeficient 0.0005 0.0004 0.0002 0.0001

Season Variogram model Co Cy R

Spring: Linear 0.0387 0.0945 8453.08
Summer: Exponentian 0.0458 0.0741 19811.34
Autumn:  Exponentian 0.0321 0.0636 6521.70
Winter: Linear 0.1179 0.1373 10882.88

S. Summary

In the research described in this paper the generalized product-sum variogram models
for each season are calculated. These type of variogram model are not separable and
describes better the spatial-time process. Also the generalised product-sum varlogram
model not require the use of a complex calculations.

The check of the goodness of the fitted variogram models through cross-validation
method planned in future.
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REZIUME

I. Kritminiené, K. Ducinskas. Jiriniy tyrimy centro erdvés-laiko duomeny apibendrinti
multiplykatyviis-adityviis variogramy modeliai

Pagrindinis Sio tyrimo tikslas yra Jariniy tyrimy duomenims parinkti geriausius apibendrintus multipli-
katyvius-adityvius erdvés laiko modelius. Esminis apibendrinto ir paprastojo multiplykatyvaus-adityvaus
erdves laiko modelio skirtumas tas, kad apibendrinto modelio koeficientas k priklauso ne tik nuo parametry
ki, k2, k3, bet ir nuo parametry k; bei k;. Siekiant igyvendinti tikslg ks ir k; parametrai buvo parinkti taip,
kad buty igyvendintos visos biitinos salygos, kurios uZtikrina apibendrinto multiplykatyvaus-adity vaus
erdves laiko modelio teisinguma. Pagrindinis §io variogramos modelio privalumas — Jis apraSo proceso
kitimg ir laike, ir erdvéje bei nereikalauja sudétingy skaiciavimy.



