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1. Introduction

A special class of nonlinear systems applied in engineering is Hammerstein systems
with hard input nonlinearities. They, usually, consist of a static input nonlinearity and
a linear dynamic system that are coupled together. Ordinary examples of hard nonlin-
earities are the saturation, preload, relay, dead-zone, hysteresis-relay, and hysteresis
nonlinearities [1]. However, the assumptions that the nonlinearity is invertible or lin-
ear in a small region around the origin are not satisfied for most hard nonlinearities,
because they cannot be described by polynomials and are noninvertible in general. On
the other hand, the Hammerstein systems are common in nonlinear control applica-
tions [3]. Frequently as an input nonlinearity the piecewise saturation-like nonlinear-
ity is used here, too. Assuming the nonlinearity to be piecewise linear, one could let
the nonlinear part of the Hammerstein system be represented by different regression
functions with some parameters, that are unknown beforehand. In such a case, obser-
vations of the input of a Hammerstein system could be partitioned into distinct data
sets according to different descriptions. The boundaries of sets of observations depend
on the value of the unknown threshold a — observations are divided into regimes sub-
ject to whether the some observed threshold variable is smaller or larger than a [4, 5].
Therefore according to [6], the problem of the identification of unknown parameters
of nonlinear and linear blocks of the Hammerstein systems could be solved, if a sim-
ple way of partitioning the available data sets were found in the case of unknown a.
Afterwards, the estimates of parameters of regression functions could be calculated by
processing particles of observations to be determined.

2. Statement of the problem

The Hammerstein system given in Fig. 1 consists of a static nonlinearity f(-,n) fol-
lowed by a linear part G(gq, ©®). The linear part of the Hammerst€in system is dynamic,
time invariant, causal, and stable. It can be represented by a time invariant dynamic
system (LTI) with the transfer function G(g, ®) as a rational invertible function of the
form

bo+biqg '+, ..., +bpqg™™ B(q,b)

G(q,®) = -
4, 9) l1+aig71+,...,4+amg™™ 1+ A(q,a)
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Fig. I. The Hammerstein system with the process noise v(k) and that of the measurement ¢(k). The linear
dynamic part G (g, ©) of the Hammerstein system is parameterised by ©, while the static nonlinear
part f(-,n) —by n. Signals: u(k) is input, y(k) is output, x(k) is an unmeasurable intermediate signal.

with a finite number of parameters
®T — (b()vbl’ °"7bn’laal9 '°-aal7’l)7
b’ = (bo,b1,....bw), a' =(a1.....an), (2)

that are determined from the set €2 of permissible parameter values ®. Here ¢ is a time-
shift operator, the set €2 is restricted by conditions on the stability of the respective
difference equation. The output signal

__B(g.b)
1+ A(q,a)

1s generated by the linear part of the Hammerstein system (1) as a response to the
unknown intermediate signal

y (k)

x (k) +e(k), (3)

x(k) = f(utk), n) + v(k) 4)

with u(k) as an input. Here the nonlinear part f(-,n) with the vector of parameters
n 1s a saturation-like function of the form [7]

co+cru(k) 1if ukk) < —a,
fuk),n) =3 uk) if —a<u(k)<a, (5)
do+dulk) if uk)>a

that could be partitioned into three functions. Here co = —a(1 —¢}),0 < c¢| <a, dy =
a(l —dy),0<d| <a.

The process noise v(k) and the measurement noise e(k) are added to an interme-
diate signal x (k) and the output y(k), respectively. Noises are mutually noncorrelated
sequences of independent Gaussian variables with zero means and variances o2, 0’2,
respectively.

The aim of the given paper is to estimate parameters (2) of the linear part (1), as
well as parameters n = (cg, c1,do, d;)! and the threshold a of nonlinearity (5) by

processing N pairs of observations u(k) and y(k) of the Hammerstein system (Fig. 1).

3. The data reordering

Let us rearrange the data u(k) Vk € 1, N in an ascending order of their values. Thus,
the observations of the rearranged input & (k) of the Hammerstein system should be
partitioned into three data sets: left-hand side data set (N; samples) with values lower
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than or equal to negative a, middle data set (N samples) with values higher than
negative a but lower or equal to a, and right-hand side data set (N3 samples) with
values higher than a. Here N = N + N, 4+ Nj3. In spite of the unknown a, from
the engineering point of view it is assumed that no less than 50% observations are
concentrated on the middle-set and approximately by 25% or less on any side set.
Hence, the observations of the rearranged input #(k) with the highest and positive
values will be concentrated on the right-hand side set, while the observations with the
lowest and negative values on the left-hand side one.

Let us suppose now that the process noise v(k) is absent. Then the observations of
the middle data set u (k) are coincident with the respective observations of the interme-
diate signal x (k) equivalent to those input observations u (k) that passed the piecewise
nonlinearity (5) without any processing. In such a case, one could get these observa-
tions simply by choosing the upper interval bound lower than the 75 percentage and
the lower interval bound higher than the 25 percentage of the sampled reordered ob-
servations of u (k). Thus, the middle data set u(k) Vk € Ny + 11, Ny — [ is, really,
reordered in an ascending order of their values u(k) V& € 1, N with small portions of
missing observations within it that belong to the left-hand and right-hand side sets of
the data. Here arbitrary integers /1, [, > 0. If Ny and N3 are unknown beforehand then
an approach used in robust estimation could be applied here, too [2].

Let us now partially reconstruct an unmeasurable intermediate signal x (k), choos-
ing in the initial order only those values of u(k) Y k € I, N that are present in the mid-
dle datasetof u(k) Vk € Ny 411, Ny — I>. Insuch a case one could get x (k) = u(k) for
k =1+ I(k), such that I(k) < I(k + 1), where I(k) is a positive time-varying integer.
Really, assuming that the process noise v(k) is absent, the available sequence x (k) is
equivalent to the input sequence u (k) but with some portions of missing observations
in it that belong to the left-hand or right-hand side sets of the rearranged data. It could

be used to calculate the estimates of parameters (2) of the transfer function G(g, ©)
according to

~

0 =xX"x)" Xy, (6)
if a number of equations of the initial system of linear equations
Y =X0O, (7)

with respective observations of the input signal in the matrix X are deleted. Here
~T  ~ ~ AA ~ A A A
© =m,4)", b =obi,....bn), & =(,...,am) 8)

are 2m + 1) x 1, (m + 1) x 1, m x 1 vectors of the estimates of parameters (2),
respectively,

Sam+ ... al)  Fm) ... F(A)
Bm+2)... @2 jm+1... FQ2) -

GN) . G(N—m) 5N —1) ... 5(N —m) |
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is the (N — m) x (2m + 1) matrix, consisting of observations of the reordered input
u (k) and the associated output signal y(k), and Y is the (N —m) x 1 vector, consisting
of y(k).

Afterwards, one could completely reconstruct the unknown intermediate signal
x(k)Vkel,N according to the formula

A A

. 1 a apm
)= —y®) + —=y(k — D+, ..., +—=y(k —m)

b b by
by . b .

Rk -1, =R k= m), (10)
b by

if in (1) their estimates are substituted instead of respective parameter sets (2). Here
x (k) is an estimate of x (k), bo % 0.

Estimates of the parameters cg, dy and ¢, d; are calculated by the ordinary least
squares, too. In such a case, the sums of the form

Nj
I(co,c1) =Y [2G) — co — c1ii ()]’ = min!, (11)
i=1
N ~
I(do.d)= Y [E()~do—di(j)]’ = min!, (12)
J=N1+L+1

are to be minimized in respect of parameters cg, ¢1 and dg, d;, respectively, using side-
set data particles of x(k) and respective observations of the rearranged input signal

u(k). Here x (k) are observations of the signal x (k) that were rearranged in accordance
with u (k).

The estimates of the threshold a for the right-hand side and left-hand side sets are
found according to

=do/(1 —d1), a=2)/(1—¢ép), (13)

respectively.

In order to determine how the same process noise realization and different real-
izations of measurement noise affect the accuracy of estimation of unknown parame-
ters, we have used the Monte Carlo simulation with 10 data samples, each containing
100 input-output observation pairs. 10 experiments with the same realization of the
process noise v(k) and different realizations of the measurement noise e(k) of dif-
ferent levels of its intensity were carried out. The intensity of noises was assured by
choosing respective signal-to-noise ratios (SNR) (the square root of the ratio of sig-
nal and noise variances). For the process noise SNRY was equal to 100 and for the
measurement noise SNR®: 1, 10, 100. As inputs for all given nonlinearities, the pe-
riodical signal and white Gaussian noise with variance 1 were chosen. In each ith
experiment the estimates of parameters were calculated. During the Monte Carlo sim-
ulation, averaged values of the estimates of parameters as well as of the threshold
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Table 1. Averaged estimates of the parameters by, ay, ¢, c1, dg, d;, and thresholds a, —a with their
confidence intervals (the first line for each estimate corresponds to the pertodical signal, while the second
line to the Gaussian white noise as inputs)

Estimates SNRf¢ =1 SNR¢ =10 SNR¢ =100
b 0.394+0.10 0.324+0.03 0.3+ 0.01
0.34+0.05 0.324+0.01 0.34+0.00

ai —0.09+0.09 —0.394+0.04 —0.48=+0.01
—0.17+0.11 —-0.424+0.04 —0.48=+0.02

o —1.204+0.39 —1.044+0.09 —0.99+0.03
—1.08+0.51 —0.954+0.16 —0.93+0.05

&1 0.024+024 0.044+0.07 0.06+0.02
0.024+0.28 0.074+0.08  0.07+0.03

do 0.19+0.83 0.55+0.30 0.78+0.1
0944034 0914+0.13  0.89+0.04

di 0.57+0.61 0.31+0.21 0.1540.07
0.07+0.18 0.084+0.07 0.09+0.02

a 0.624+0.83 0.574+055 091+0.06
0974+0.22 0984+0.08  0.98+0.03

—a —~1.23+0.36 —1.09+0.08 —1.054+0.02
~1.054+0.25 —140.09 —140.03

and their confidence intervals were calculated. In Table 1 for each input the aver-
aged estimates of parameters and threshold a of the simulated Hammerstein system
(Fig. 1) with the linear part (1) (b; = 0.3; a; = —0.5) and piecewise nonlinearity (5)
(co =-0.9,c1 =0.1,dy = 0.9,d; =0.1,a = 1) and with their confidence intervals
(the significance level o = 0.05) are presented. It should be noted that, in each experi-
ment here, the value of SNRY was fixed and the same while, the values of SNR¢ were
varying due to different realizations of e(k). The Monte Carlo simulation (Table 1)
implies that the accuracy of parametric identification of the Hammerstein system de-
pends on the intensity of process and measurement noises as well as on the type of the
input signal.

The problem of identification of Hammerstein systems could be essentially reduced
by a simple input data rearrangement in an ascending order of their values. Thus, the
available data are partitioned into three data sets that correspond to distinct threshold
regression models. Later on the estimates of unknown parameters of linear regression
models could be calculated by processing the respective sets of rearranged input and
associated output observations.
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REZIUME

R. Pupeikis. Apie Hamersteino sistemy identifikavimq

Straipsnyje nagrinéjamas HamerSteino sistemy laipsni$kas dalimis tiesi§ko netiesi$kumo su neZinomais
nuozulnumais bei neZinomy slenksciy ir tiesinés dalies, apraSomos skirtumine lygtimi su neZinomais ko-
eficientais, junginys. Parodyta, kad pertvarkius i¢jimo signalo stebéjimus pagal didéjanéias ju reik¥mes,
galima i3skirti viduring stebéjimy dali, atitinkancia nestebimo tarpinio signalo stebéjimus. Pasiiilytas pilno
tarpinio signalo atstatymo biidas pagal i¢jimo signalo vidurinés dalies ir atitinkamus i§éjimo signalo
stebéjimus. NeZinomy tiesinés HamerSteino sistemos dalies koeficienty ir dalimis tiesisko netiesiSkumo
parametry bei slenksciy iveriai gaunami maZiausiyjy kvadraty metodo algoritmais, apdorojant stebimy
pertvarkyty i¢jimo, 18¢jimo bei atkurto tarpinio signaly duomenis. Pateikti modeliavimo rezultatai.



