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Spatial time-series modeling with R system”
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Abstract. In this paper we propose modeling technique, which was applied to multivariate time series data
that correspond to different spatial locations (spatial time series). ARIMA model class is considered for
each location. Forecasting model for new location is built by spatial “connection” of identified models in
observed locations. Spatial “connection” is implemented by spatial averaging of the coefficients of mod-
els and by ordinary kriging procedure for means. This modeling technique is illustrated by a substantive
example using R system.
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1. Introduction

Research in statistical models that describe the spatio — temporal evolution of a single
variable in space and time started in the midseventieth (see Cliff, Ord 1975) and has
significantly increased during the last twenty years since it’s closely related to the
progress in computer technology and the existence of large data bases.

Spatial-time series called STARIMA model class developed at early eighties by
Pteifer and Deutch (1980). But these are still not implemented in the widely applica-
ble computer program systems such as SPSS, STATISTICA, S—PLUS and R. We have
developed spatial-time series modeling technique which could be easily implemented
by software with ARIMA, ordinary kriging and semivariogram fitting procedures (i.e.,
GEOSTAT, R, S—PLUS). The proposed technique based on spatial “connection” of
ARIMA fitted to observed data.

2. Modeling procedure

Let Z;(s) represent an observation of random variable Z at location s and ¢ time.

The whole analyzed data set is represented by the expression {Z;;, i =1,...,N:
t=1,...,T}, where Z;; = Z,(s;). We assume that mathematical model of Z;, is
Sip(B)$i(B)V V Ziy = a; + @i (B*)0; (B)eiy (1)

and denote it by ARIMA (p,d,q) x (R, D, Q);, i.e., multiplicative seasonal autore-
gressive moving average model with nonzero mean. In the above equations and no-
tational expression, the ordinary autoregressive and moving average components are
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represented by polynomials ¢ (B) and 6(B) of orders p and g respectively the sea-
sonal autoregressive and moving average components by ® p (B*) and © o (B’) of or-

ders P and Q and ordinary and seasonal difference components by Ve =(1 - B)?
and VP = (1 — B%)P, respectively.

Spatial-time model fitting consists of two parts: ARIMA model fitting in each lo-
cation (in R system arima package, stats procedure) and kriging estimation of mean
(krige package, gstat procedure).

There are several basic steps of fitting ARIMA models to time series data. These
steps involve plotting the data, possibly transforming the data, identifying the depen-
dence orders of the model, parameter estimation, and diagnostics.

First we should plot the data Z;; versus ¢, and inspect the graph for any anoma-
lies. Next step is to identify initial values of the autoregressive order p, the order of
differencing d, and the moving average order q. A time plot of the data will typically
suggest whether any differencing is needed. When preliminary values of d have been
settled, the next step is to look at the sample autocorrelation function (AC F) and par-
tial autocorrelation function (PACF) of V4 Z;; for whatever values of d have been
chosen. Also using (ACF) and (PACF) we can choose preliminary values of p and
q [10]. At this stage, a several initial values of p,d and g should be at hand, and we
can start estimating the parameters.

The next step in model fitting is diagnostics. This investigation includes the analysis
of the residuals as well as the model comparisons. Investigation of marginal normality
can be accomplished visually by looking at a histogram of the residuals. In addition to
this,a @ — Q plot can help in identifying departures from normality. There are several
test of randomness, for example the runs test, which could be applied to the residuals.
Also we can use a general or portmaneu test, i.e., Ljung—Box—Pierce test[10].

The final step of model fitting is model choice. The most popular techniques are
AIC, AICc, and SIC also cross validation [10].

Thus in each location we should fit ARIMA model with the same number of param-
eters and nonzero constant.

For kriging estimator and for spatial “connection” we need to fit semivariogram
(Gstat package, variogram, fit.variogram functions). Spatial connection for new loca-
tion 1s proposed to realize by spatial weighted average method with the spatial weights:

50; — Y (sio) @)

.
> 1=1 Y0

There y (s;o) is the semivariogram between i-th and a new location sp.
Then parameters for new station can be calculated by:

N
dor =) Soidis, I=1,...,p, 3)

i=1

(autoregression parameters),

N
Ook =) " 80ibix, k=1,...,q, (4)
i=1
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(moving average parameters),

ci:Oinao,-&),-L, L=1,..., P, (5)
i=1
N
@0K=Z50i@ik, K=1,...,0, (6)
i=1
(seasonal parameters), N
8e = ) 80i67; (7)
i=1

(dispersion of residuals).

As we have already fitted semivariogram and nonzero constant for each location, we
can find the kriging estimator (i, and the nonzero constant for model at new location
is agp = Ak (1 — ¢o1 — ... — ¢pp). Then fitted model for new a location will be:

Zor = ook + G01Zos—1 + ... + q’SOpZO,t—-p +eor + 0018001+ - .-
+éoq80,t—q+<f901zo,t—s+- .+ Dgp Zo.1—s—p+©O0180.1—s+- ..
+ @0Q80,t—s—Q- ) (8)

If there is not information about observations at new location until time moment T,
then time prediction at new location is done by model (8) for simulated data. Simulated
data were obtained by simulating several time series (T values for each). Averages of
the simulated values for each time moment until T forms a “new” time series which is
used for prediction. '

As we will have several different models, estimation of prediction at new location
can be performed by cross-validation method.

3. Example

Lithuanian Sea research center data was used for illustration of proposed modeling
technique. Data set consist of 32 time observation (t = 1,...,32) of the salinity in
Baltic coastal zone in 9(N = 9) station.

Using plotted data, ACF and PACF we selected several most appropriate
models for all stations: ARIMA(2,0,2),ARIMA(2,0,1),ARIMA(2,0,1) x (1,0, 1)q4,
ARIMA(2,0,0) x (1,0, 1)4,ARIMA(0,0,2) x (1,0,0)4,ARIMA(1,0, 1)4.

After diagnostics step the two models ARIMA(2,0, 1)x(1,0, 1)4 and ARIMA(0,0,2)
x (1,0, 0)4 left.

Thus we can conclude that salinity in Baltic see is seasonal.

To obtain spatial weight, we need semivariogram. Semivariogram is fitted using
the all data. Minimum of Sum square error (SSE) is used for selection criterion. The
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Spherical semivariogram is optimal:

0, | when |h| =0,
y (1) = { 0.208 +0.06(2 il — L(H5-)%),  when 0 < |h| < 16456.81,
| 0.208 + 0.06, when |h| > 16456.81.

After spatial connection procedure (3-7) ARIMA(2,0, 1) x (1,0, 1)4 model for new
station can be written as:

Zot =10.0428 4+ 0.0546Z¢ ;1 — 0.1885Z¢ s—3 + €0,r — 0.3157¢¢ ;—1
+ 0.0366Z¢,s—4 + 0.1689¢¢ ;4 9)
and ARIMA(0, 0, 2) x (1,0,0) model as:
Zot = 6.3649 + g9, — 0.2298¢¢ ;-1 — 0.2129¢0 ;2 + 0.0596 Z¢ ;4. (10)

In case (9) prediction at new station for time moment T + 1 was Zy 741 = 10.0013,
while in case (10) it was Zg 741 = 6.0589.

After cross validation procedure we obtained that in case (9) MSP E = 4.53, while
in case (10) MSPE = 3.27.

Thus we can conclude, that (10) is better model for considered data for prediction
of salinity for station s.
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REZIUME

L. Saltyté, K. Ducinskas. Erdvés-laiko duomeny modeliavimas sistemos R aplinkoje

Straipsnyje apraSyta nauja erdviniy laiko eilu¢ig modeliavimo technika, kuriuos esminis principas — erd-
vinis modeliy sujungimas. Sitlloma technika lengvai realizuojama laisvai platinamos sistemos R pagalba.
Modelis realizuotas Naudojant Lietuvos Jiriniy tyrimy centro duomenis.



