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On the convergence of stochastic processes
in the space of discontinuous functions
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We discuss the convergence in distribution of superpositions of integer-valued
stochastic processes in the function space D = D[0, o) endowed with the Skorohod
M; topology. As usual, D[0, co) denotes the space of all right-continuous functions
with left limits, defined on [0, 00). Stochastic process limits are customarily estab-
lished by exploiting D endowed with the Skorohod J;-topology which is stronger
than the M; topology. However, sometimes the J; topology cannot be used, while the
M, topology works.

The J; topology can be introduced by defining the Ji-convergence in D ([1-3]).
We say that the sequence x,, € D Ji-converges to x € D if there exists a sequence
A, of continuous strictly increasing functions on [0, 00) with A,(0) =0, A,,(00) = 00
such that, for each 7T > 0,

lim sup |)\,,(t)-—t|—
n=>00 0T

and

lim sup |x()» (1)) — xn(t)‘-—:O.
n—=>00LtLT

The M; topology can be introduced in the following way ([1], [4]). For y € D[0, T]
the completed graph of y is the set

={@ 1 e Rx[0,T]: z=ay@=) + (1 —a)y() forsome &,0<a <1},

where y(z—) is the left limit of y at z. The order on the completed graphs is defined
by saying that (z1, #1) < (22, 1) if either (i) #; <ty or (ii) #y =t and, |y(t1—) — 21| <
|y(t2—) — z2]. Thus, the order is a total order starting from the “left end” of the com-
pleted graph and concluding on the “right end”.

A parametric representation of the completed graph I'), is a continuous nondecreas-
ing function (u, r) mapping [0, 1] onto I';, with u being the spatial component and r
being the time component. For any yi, y» € D[0, T] the M1 metric is defined by

d , = inf uy —usrl| Vv ilry — rllt,
w1 15 ¥2) L S Hluy — uall v liry = r2ll}
i=1,2
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where I1(y;) is the set of parametric representations of y;, ||- || is the uniform metric,
and a V b = max{a, b}.

We say that the sequence x,, € D[0, 0c0) M;-converges to x € D if foreach T > 0
at which x is continuous, the restrictions of x,, to the subinterval [0, T'] converge in the
space D[0, T'] to the restriction of x with respect to the M| metric.

By the integer-valued stochastic process we mean the process X (¢), ¢ > 0, for which
increments X (¢) — X (s), s < ¢, are integer-valued random variables, and X (0) =0 a.s.
If the values X (f) — X (s) are non-negative, X (¢) is called a point process.

For A =(s,t],let X(A) =X (@) — X (s).

The integer-valued process X (¢) with independent increments will be called a com-
pound Poisson process if for each A

Eexp {iuX(A)} :exp{Z)\nl(A)(ei“m - 1)}, (1)
iz
where A,,(-) is a measure (m # 0) and Zm olm|An(A) < oo ([5], [6]). If A;() =

AC), Am()=0form #1, X(¢) is the P01ss0n process with EX () = A ().

d,J d,M
We denote by X, ard X or X, — X the convergence in distribution of the se-

quence of stochastic processes X, to X in the space D endowed with the J; or M|
topology, respectively.
Let

{X,,k(t),kz ... ky, n>1,

kn
ngn&lér}(%g(k P{X(t) >0} = _)ool;P{Xnk(t) > 1} =0, t>0] (2)

be infinitesimal array of independent point processes. Denote

ke

Xn() =) Xu(0), (3)
k=1
kn

Ap(t) =) P{Xu(t) > 0}. 4)
k=1

d, .
Let XA (¢) be the Poisson process with mean EX () = A(¢). Then X, ——i’ X if
and only if A, Jj-converges to A (see, e.g., [3], [7]).
An analogous statement holds in the space D with the M| topology.

THEOREM 1 Let X, be defined by (3) and X p be the Poisson process with mean
A. Then X, X A ifand only if A, Mi-converges to A.
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Proof. By Corollary 12.5.1 in [4] and Theorem 1 in [8], the M/-convergence of A,
to A is equivalent to the weak convergence of the distributions of (X, (t1), ..., X, (tn))
in R™ to those of (X (t1),...,Xa(ty)) for all continuity points ¢, ..., %, of A(t),

which in turn is tantamount to the convergence in distribution of X, to X in D with
the M/-topology (cf. [9]).

Let an integer-valued random variable ’;’,f; , be attached to the i-th point of the point
process X, (¢) in (2), pnk (m) = P{€), =m} and

Zu) =) Enxity <th,
i>1

where r,ik is the i-th point of X,;(¢), and x denotes the indicator function. Denote

Z,(t) = Zﬁ": 1 Znk (t). Let A() be a non-decreasing function on [0, 00), and let Cp
be the set of continuity points of A. |

THEOREM 2. Suppose that
lim_puk(m)=p(m) and ) p(m)>0, }  p(m)>0.
n—
m>1 m<—1

Then the sequence Z, converges in distribution in the function space D with the M
topology to the compound Poisson process X defined by (1) with Ap, = pp A, if and
only if for each t € Cp,

lim A,(2) = A1), (5)
n—0o0
and for each u & Cp,
lim lim sup f [An(u+8) — Au(s)]dA,(s) =0. (6)
60 n—soo J(u—8,u+s)

Proof. By Theorem 1 in [3], (5) is the necessary and sufficient condition for the
weak convergence of the finite-dimensional distributions of Z, to those of the com-
pound Poisson process at continuity points of A. The tightness of the distributions of
Z, in D can be characterized in terms of the following oscillation function introduced
in [4].

Forx e D,t >0,and § > 0, let

wee,t,) = sup | x@ = xe.x01] |

=0t <h <tz <t+d

where ||z — A|| is the distance between the point z and subset A in R, and [a, b] is the
standard segment.

The sequence of the distributions of Z, in D with the M topology is tight if and
only if foreach T € Cxp

lim limsupP{ sup w(Z,,t,8) 2> 1} = 0. (7)
6—>0 pnooo 0<i<T
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Thus, we have to prove that (6) and (7) are equivalent. Letu € Cp, T € Cp, and

Ai:U{u—8<r,}k<tl u-+9, é,lk>0 Snl<0 'c - >T for i #k, l}

k2]
Obviously,
P(A2) > P{X,(T) =0} 2/ [P{ X, +5) > 0]
k£l (u—38,u+96)

— P{X,i(5) > 0} | dP{ X, (5) > 0}P{g), > 0} (&), <0},

Since P(A}) < P{supgg,<7 w(Zy,1,8) > 1}, (7) implies (6).
To prove the converse, put

W (x,1,8) = sup {Ix(zl)—x(r)j A Ix(tz)—x(t)l},

=0t <t<ty<t+6

where a A b = min{a, b}. It is obvious that

P{ sup w(z,,,t,a)>1}<1>{ sup w’(Xn,t,6)>1}. (8)
0<I<T 0<t<T

By Theorem 7 in [3], (6) is equivalent to the tightness of distributions of X, with
respect to the J; topology. Consequently, (6) implies the relation

11m11msupP{ sup w’(Xn,t,(S)}l} 0,
(S-)O n—o00 O<t<T

which, by (8), implies (7).

As mentioned above, (6) characterizes tightness of distributions of X,, and thus (5)
and (6) are necessary and sufficient for the Ji-convergence of A, to A. So we can
formulate the statement in Theorem 2 as follows.

THEOREM 3. Under the assumption in Theorem 2, Z,, M| converges converge to
the compound Poisson process X if and only if the sequence A, J| converges to A.

Note that the condition of the theorem is not necessary without the assumption on
the distributions p,;(m).
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REZIUME
R. Banys. Apie atistiktiniy procesy konvergavimq trikiujy funkcijy erdvéje

Nagrinéjamas sveikareikSmiy atsitiktiniy procesy sumy konvergavimas erdvéje D[O, oo) su Skorochodo
topologijomis J; ir M. Gautos tokiy sumy konvergavimo i apibendrintus Puasono procesus salygos.



