The definition of one complex-valued random variable

Antanas LAURINČIKAS* (VU, ŠU)

e-mail: antanas.laurincikas@maf.vu.lt

Let F(z) be a holomorphic cusp form of weight κ for the full modular group $SL(2,\mathbb{Z})$. This means that F(z) is holomorphic function in the upper half-plane $\Im z > 0$, for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$ satisfies the functional equation

$$F\left(\frac{az+b}{cz+d}\right) = (cz+d)^{\kappa} F(z),$$

and $\lim_{\Im z \to \infty} F(z) = 0$. Moreover, we assume that F(z) has the following Fourier series expansion

$$F(z) = \sum_{m=1}^{\infty} c(m)e^{2\pi i m z}, \quad c(1) = 1.$$

Let $s = \sigma + it$ be a complex variable. The function

$$\varphi(s; F) = \sum_{m=1}^{\infty} \frac{c(m)}{m^s}$$

is called the zeta-function attached to the cusp form F(z). In view of the multiplicativity of the Fourier coefficients c(m), $\varphi(s; F)$ also has an Euler product expansion over primes

$$\varphi(s; F) = \prod_{p} \left(1 - \frac{\alpha(p)}{p^s}\right)^{-1} \left(1 - \frac{\beta(p)}{p^s}\right)^{-1},$$

where $c(p) = \alpha(p) + i\beta(p)$. By Deligne's estimate [1]

$$|\alpha(p)| \leqslant p^{\frac{\kappa-1}{2}}, \quad |\beta(p)| \leqslant p^{\frac{\kappa-1}{2}}$$

it follows that the Euler product and the Dirichlet series for $\varphi(s, F)$ both converge absolutely for $\sigma > \frac{\kappa+1}{2}$. Hence $\varphi(s, F)$ is a non-vanishing holomorphic function in

^{*}Partially supported by Lithuanian Foundation of Studies and Science.

the half-plane $\sigma > \frac{\kappa+1}{2}$. Moreover, $\varphi(s, F)$ is analytically continuable to an entire function.

For the investigation of value-distribution of the function $\varphi(s, F)$, as for other zeta-functions, probabilistic methods are applied. We recall limit theorems on the complex plane \mathbb{C} for the function $\varphi(s, F)$. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S.

Let $\gamma = \{s \in \mathbb{C} : |s| = 1\}$ denote the unit circle on the complex plane, and let

$$\Omega = \prod_p \gamma_p,$$

where $\gamma_p = \gamma$ for all primes p. With product topology and pointwise multiplication the infinite-dimensional torus Ω is a compact topological Abelian group. Therefore on $(\Omega, \mathcal{B}(\Omega))$ the probability Haar measure m_H exists, and we obtain a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Let $\omega(p)$ stand for the projection of $\omega \in \Omega$ to the coordinate space γ_p . For positive integer m we put

$$\omega(m) = \prod_{p^{\alpha} \parallel m} \omega^{\alpha}(p),$$

where $p^{\alpha} || m$ means that $p^{\alpha} || m$ but $p^{\alpha+1} \nmid m$. For $\sigma > \frac{\kappa}{2}$, on the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$ define the complex-valued random variable $\varphi(s, \omega; F)$ by

$$\varphi(s,\omega;F) = \sum_{m=1}^{\infty} \frac{c(m)\omega(m)}{m^{\sigma}} = \prod_{p} \left(1 - \frac{\alpha(p)\omega(p)}{p^{\sigma}}\right)^{-1} \left(1 - \frac{\beta(p)\omega(p)}{p^{\sigma}}\right)^{-1}.$$

Denote by P_{φ} the distribution of $\varphi(\sigma, \omega; F)$, i.e.,

$$P_{\varphi}(A) = m_H(\omega \in \Omega: \varphi(\sigma, \omega; F) \in A), A \in \mathcal{B}(\mathbb{C}).$$

Let $meas\{A\}$ denote the Lebesque measure of a measurable set $A \in \mathbb{R}$. Then we have the following statement.

THEOREM 1. For $\sigma > \frac{\kappa}{2}$, the probability measure

$$\frac{1}{T}meas\{t \in [0; T]: \varphi(\sigma + it; F) \in A\}, \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to P_{φ} as $T \to \infty$.

Proof. The theorem is a consequence of a limit theorem in the space of analytic functions for $\varphi(s; F)$ obtained in [2].

Now we will state a discrete limit theorem for $\varphi(s; F)$. Let h > 0 be a fixed number.

THEOREM 2. Suppose that $\exp\{\frac{2\pi k}{h}\}$ is irrational for all integers $k \neq 0$. Then, for $\sigma > \kappa/2$, the probability measure

$$\frac{1}{N+1} \# (0 \leqslant m \leqslant N \colon \varphi(\sigma + imh; F) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to P_{φ} as $T \to \infty$.

Proof. In [3] a discrete limit theorem on the complex plane for the Matsumoto zeta-function was proved. Since the function $\varphi(s; F)$ is a particular case of the Matsumoto zeta-function, hence the theorem follows.

Now suppose that there exist integer numbers $k \neq 0$ such that $\exp\{\frac{2\pi k}{h}\}$ is rational. Clearly, it suffices to consider only positive integers k. Denote by k_0 the smallest of such k. Then it is not difficult to see that each k with above property is a multiple of k_0 . Really, we can write $k = ak_0 + b$ with $0 \leq b < k_0$. Then

$$\exp\left\{\frac{2\pi k}{h}\right\} = \exp\left\{\frac{2\pi a k_0}{h}\right\} \exp\left\{\frac{2\pi b}{h}\right\},\,$$

where $\exp\{\frac{2\pi k}{h}\}$ and $\exp\{\frac{2\pi a k_0}{h}\}$ are rational numbers. Thus $\exp\{\frac{2\pi b}{h}\}$ must be also rational, and by the definition of k_0 we obtain that b=0.

Let $\exp\{\frac{2\pi k_0}{h}\} = \frac{m_0}{n_0}$ with $m_0, n_0 \in \mathbb{N}$, $(m_0, n_0) = 1$, and let $\Omega_h = \{\omega \in \Omega : \omega(m_0) = \omega(n_0)\}$. Then Ω_h is a closed subgroup of Ω , and therefore it is a compact topological Abelian group. Therefore, as in the case of Ω , on $(\Omega_h, \mathcal{B}(\Omega_h))$ the probability Haar measure m_{hH} exists, and this leads to a probability space $(\Omega_h, \mathcal{B}(\Omega_h), m_{hH})$.

The aim of this note is to define a complex-valued random variable on the probability space $(\Omega_h, \mathcal{B}(\Omega_h), m_{hH})$. Let, for $\sigma > \frac{\kappa}{2}$,

$$\varphi(\sigma,\omega;F) = \sum_{m=1}^{\infty} \frac{c(m)\omega_h(m)}{m^{\sigma}}, \quad \omega_h \in \Omega_h.$$

THEOREM 3. $\varphi(\sigma, \omega_h; F)$ is a complex-valued random variable defined on the probability space $(\Omega_h, \mathcal{B}(\Omega_h), m_{hH})$.

Proof. If suffices to prove that, for $\sigma > \frac{\kappa}{2}$, the series

$$\sum_{m=1}^{\infty} \frac{c(m)\omega_h(m)}{m^{\sigma}} \tag{1}$$

converges almost surely with respect to the measure m_{hH} .

Without loss of generality we may suppose that the prime numbers $p_1, p_2, ..., p_l$ occur in the factorization of the numbers m_0 and n_0 , and denote by α_i the exponent of p_i in $\frac{m_0}{n_0}$, i = 1, ..., l. Then we have that

$$\omega^{\alpha_1}(p_1)\omega^{\alpha_2}(p_2)...\omega^{\alpha_l}(p_l)=1.$$

Hence, say $\omega(p_1)$, can be expressed by $\omega(p_2), ..., \omega(p_l)$. Denote this expression by $\widehat{\omega}(p_1)$, where some fixed value is taken, for example, with the smallest argument. Define a function $y: \Omega \to \Omega_h$ by the formula

$$g(\omega) = \omega_h$$

where

$$\omega = (\omega(p_1), \omega(p_2), \ldots),$$

and

$$\omega_h = (\widehat{\omega}(p_1), \omega(p_2), ...).$$

It is not difficult to see that

$$\int_{\Omega_h} \omega_h(m) \overline{\omega_h(n)} \, \mathrm{d} m_{hH} = 1,$$

if m = n or $m = km_0$, $n = kn_0$, $k \in \mathbb{Z}$. The function g is measurable, it is even continuous. By the formula of change of variable we find

$$\int_{\Omega_h} \omega_h(m) \overline{\omega_h(n)} \, \mathrm{d}m_{hH} = \frac{1}{|\alpha_1|} \int_{\Omega} g(\omega)(n) \overline{g(\omega)(n)} \, \mathrm{d}m_H.$$

Since $\{\omega(m)\}\$ is a sequence of pairwise orthogonal random variable, hence we obtain that

$$\int_{\Omega_h} \omega_h(m) \overline{\omega_h(n)} \, \mathrm{d} m_{hH} = 0,$$

if $m \neq n$ and $m \neq km_0$, $n \neq kn_0$, $k \in \mathbb{Z}$. Therefore we have that $\{\omega_h(m)\}$ is a sequence of pairwise orthogonal random variables on the probability space $(\Omega_h, \mathcal{B}(\Omega_h), m_{hH})$. Let

$$\varphi_k(\omega_h) = \frac{c(k)\omega_h(k)}{k^{\sigma}}, \quad k = 1, 2....$$

Denote by $E\xi$ the expectation of the random variable ξ . Then we deduce from above that

$$E(\varphi_j, \overline{\varphi_l}) = \begin{cases} \frac{|c(l)|^2}{l^{2\sigma}}, & \text{if } j = l, \\ \frac{c(km_0)c(kn_0)}{(km_0)^{\sigma}(kn_0)^{\sigma}}, & \text{if } j = km_0, \ l = kn_0, \\ 0, & \text{othervise.} \end{cases}$$

Since by the Deligne estimate [1]

$$|c(k)| \leqslant m^{\frac{\kappa-1}{2}} d(m),$$

where d(m) is the divisor function, and $d(m) \ll m^{\varepsilon}$, $\varepsilon > 0$, hence we obtain that

$$\sum_{k=1}^{\infty} E|\varphi_k|^2 \log^2 k < \infty$$

for $\sigma > \frac{\kappa}{2}$. This and the Rademacher theorem on series of orthogonal random variables give the almost sure convergence of the series (1). The theorem is proved.

Note that the random variable $\varphi(\sigma, \omega_h; F)$ can be written in the form

$$\varphi(\sigma,\omega_h;F) = \prod_{p} \left(1 - \frac{\alpha(p)\omega_h(p)}{p^{\sigma}}\right)^{-1} \left(1 - \frac{\beta(p)\omega_h(p)}{p^{\sigma}}\right)^{-1}.$$

Theorem 3 can be applied in the investigation of weak convergence of the probability measure

$$\frac{1}{N+1}\#(0\leqslant m\leqslant N\colon\varphi(\sigma+imh,F)\in A),\quad A\in\mathcal{B}(\mathbb{C}),$$

in the case if $\exp\{\frac{2\pi k}{h}\}$ is rational for some $k \neq 0$.

References

- 1. P. Deligne, La conjecture de Weil I, II, Publ I.H.E.S, 43, 273–307 (1974); 52, 313–428 (1981).
- 2. A. Kačėnas, A. Laurinčikas, On Dirichlet series related to certain cusp forms, *Liet. matem. rink.*, **38**(1), 82–97 (1998) (in Russian)=*Lith. Math. J.*, **38**(1), 64–76 (1998).
- 3. R. Kačinskaitė, A discrete limit theorem for the Matsumoto zeta-function on the complex plane, *Liet. matem. rink.*, **40**(4), 475–492 (2000) (in Russian)=*Lith. Math. J.*, **40**(4), 364–376 (2000).

REZIUMĖ

A. Laurinčikas. Vieno kompleksinio atsitiktinio dydžio apibrėžimas

Nagrinėjamos ribinės teoremos kompleksinėje plokštumoje parabolinių formų dzeta funkcijoms. Apibrėžtas atsitiktinis dydis, kuris atsiranda tiriant tokių teoremų diskretųjį atvejį.