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1. Introduction

The Hilbert algebraic Nullstellensatz is traditionally stated in several different ways. We
recall two best known algebraic forms. One, sometimes called a Weak Nullstellensatz,
says that if 91 is a maximal ideal in a polynomial ring k[X;, ..., X,| over a field k,
then the field k[X;,....X,]/9 is a finite-dimentional extension of k for alln € N.
The second statement is that in the ring k[ X7, . .., X,,] every prime ideal is an intersec-
tion of maximal ideals or, in terms of radicals, in each factor ring of k[ X1, ..., X,] the
nilradical coincides with the Jacobson radical. Each of these results easily implies the
classical Hilbert theorem about zeros in polynomial rings. There is a very natural ques-
tion: which rings R have the property that for every n € N and every maximal ideal
M C R[X;,...,X,] the factor ring R[ X1, ..., X,]/9N is finitely generated as a cano-
nical R-module. When R is commutative, it has this property exactly when every prime
ideal in R is an intersection of maximal ideals. See [6] and [10]. This result gave the
motivation of the following well known definition.

A commutative ring R is called a Hilbert ring, also Jacobson or Jacobson-Hilbert
ring (see, e.g., [3, Chapter 4]) if every prime ideal of R is the intersection of maximal
ideals. This is obviously equivalent to require that in each factor ring of R the nilradical
coincides with the Jacobson radical. Evidently, the class of commutative Hilbert rings

is closed under forming factor rings. The interest in this class of rings is based on the
following characterizations.

For a commutative ring R the following are equivalent:

(a) R isa Hilbert ring;
(b) for each maximal ideal I C R|[X], the intersection 9 N R is a maximal ideal
in R,
(c) every maximal ideal of R[X]| contains a monic polynomial;
(d) every prime ideal p C R is maximal or is an intersection of prime ideals
- properly containing p;
(e) the polynomial ring R[X] is a Hilbert ring.

So the class of commutative Hilbert rings is closed under forming finite polynomial
rings. For an integral extension R C S, the ring S is Hilbert if and only if R is a Hilbert
ring. The main interest in Hilbert rings in commutative algebra and algebraic geometry
is their relation with Hilbert’s Nullstellensatz. In this article we give the answer to the
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earlier question. Which, not necessarily commutative rings, have the property that for
every maximal (two-sided) ideal 9t C R[X1, ..., X,] the factorring R[ X1, ..., X,]|/IMN
is finitely generated as a canonical R-module for all n € N.

Having in mind this question we extend the notion of commutative Hilbert rings to
any noncommutative rings by restricting the requirements to a special class of prime
ideals, the strongly prime ideals. These are related to strongly prime rings which can be
characterized by the fact that their central closures (in the sense of Martindale) are simple
rings. We give a characterization of Hilbert rings in terms of a contraction property in the
rings of polynomials, and the class of Hilbert rings is the largest class of rings having this
property. Furthermore, we characterise Hilbert rings in terms of monic polynomials, show
that the class of Hilbert rings is closed under finite polynomial and integral extensions,
and obtain a natural symmetric form of a general Hilbert’s Nullstellensatz for Hilbert
rings. Note, that we do not use the commutative Nullstellensatz in the proofs and obtain
it as a corrollary. |

All rings in this paper are associative with identity element which should be preserved
by ring homomorphisms. By an ideal of the ring we shall understand a two-sided ideal.
A C B means that A is proper subset of B. Throughout R[X3, ..., X,]| will denote

the polynomial ring with n commuting indeterminates, which also commute with the
elements from the ring R.

2. Strongly prime ideals

#
Let Rbe a prime ring, Q(R) its central closure and F'( R) the extended centroid of the ring
R, which is the centre of Q(R). As shownin [15, Section 32], Q(R) may be understood as
self-injective hull of R as R ®z R°-module. Any element ¢ € F'(R) may be represented
as an R-bimodule homomorphism ¢: I — R for some nonzero ideal I C R, called a
domain of definition of ¢ . Evidently ¢I C R in Q(R).

Lemma 2.1. Let R be a prime ring, ¢1,...,pm a finite subset of elements from the
extended centroid F(R), and P C R a prime ideal. Assume that every element o\, has a
domain of definition which is not contained in ‘P. Then the extension P€ of the ideal P in
Rlp1,...,om| € Q(R) is a proper ideal.

Proof. Let ¢r,1 < k < m, be defined on the ideal I, & P. If P¢ is not a proper ideal in
R[p1, ..., pm| we have an expression 1 = pju; + - - - + pru, € P with some px € P
and the uy being products of the given elements from the extended centroid. So all these
functions uy are defined on some nonzero finite product of the ideals I;, which is not
contained in the prime ideal P, a contradiction.

Recall that a prime ring R is strongly prime if its central closure Q(R) is a simple
ring. Various characterizations of strongly prime rings are given, e.g., in [15, 35.6] and
[8, Theorem 2.1]. For any strongly prime ring R the central closure Q(R) is left and right
flat as R-module and there is a canonical isomorphism Q(R) ®r Q(R) = Q(R), see
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Theorem 2.8 in [8]. This means that the canonical inclusion R — Q(R) is a left and
right ring epimorphism and the family of the left ideals ¥ = {L C R| QL = Q}isa
Gabriel filter giving a perfect localization in R for which Rx is canonically isomorphic
to Q(R).

Let ¢: R — S be a ring homomorphism. Then S becomes a canonical R-bimodule
and we write rs and sr instead of ¢(r)s and s¢(r) forr € R,s € S. Let Zs(R) = {z €
S | rz = xr, Vr € R} be the set of R-centralizing elements of the ring S.

We call ¢ a centred homomorphism and S a centred extension of R via ¢, provided
S = RZs(R). This means that s = ), rrxx for each element s € S withsome r, € R
and z, € Zgs(R). If Zs(R) is commutative then centred extensions are called central
extensions. Rings and their centred homomorphisms form a category, known as Procesi
category. A centred extension R C S is called a liberal extension if S is finitely generated
as a canonical R-module.

Anideal p C R is called strongly prime if the factor ring R/p is a strongly prime ring.
The following lemma recalls some crucial properties.

Lemma 2.2. Let ¢: R — S be a centred homomorphism.
(1) Assume S to be a simple ring. Then:

(1) The kernel of ¢ is a strongly pri;ne ideal in R.
(ii) If ¢ is injective, there is a unique extending ring homomorphism Q(R) — S
which maps the center of Q(R) into the center of S.

(2) Assume R C S to be a liberal extension. Then for any prime ideal p in R there is
a prime ideal ideal P in S with* BN R = p (lying over).

Proof. (1) (i) follows from the characterisations of strongly prime rings (see [8, Theorem
2.1]). (i1) follows from Amitsur [2, Theorem 18].
(2) This is shown in [12, Theorem 4.1].

The intersection of all strongly prime ideals of the ring R is called the strongly prime
radical and we denote it by SP(R). We recall, that the intersection of all maximal (two-
sided) ideals of the ring R is called Brown-McCoy radical of the ring, which we denote
BMc(R). These two radicals are closely related.

Theorem 2.3. In any nonzero ring R,

SP(R) = (| (RN BMc(R[Xy, ..., X4))).

n21

Proof. If a € R does not belong to some maximal ideal 9 C R[X;,....X,], then
a g MNR =p.Clearly R — R[X;,..., X,]|/Mis a centred extension and, by 2.2,
p C Ris a strongly prime ideal. So a € SP(R). If a ¢ p for some strongly prime ideal
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p C R, then in the central closure Q(R/p), which is a simple ring by definition of the
strongly prime ideals, and we have an expression

a1+ -+ anpn =1,

where aj,...,a, € (a) = RaR, and 1, ..., p, are from the extended centroid of the
ring R/p, which is the centre of Q(R/p). So, sending X}, to o for 1 < k < n, we obtain
the centred homomorphism ¢: R[ X1, ..., X,] — Q(R/p). Evidently, the polynomial
a1 X1 + -+ + anX, — 1isin the ker¢. If M C R[Xy,...,X,] is a maximal ideal

containing ker¢, thena ¢ MM, and a ¢ BMc(R[X}, ..., X4,]). So we have proved both
inclusions.

In terms of elements, a € SP(R) if and only if for any a1, ...,a, € (a), the ideal in

R[X., ..., Xy, generated by the polynomial a1 X; + --- 4+ a, X,, — 1 contains 1 g (see
[8, Theorem 3.2]).

Theorem 2.4. Let M C R[Xy,..., X,] be a maximal ideal and p = M N R. Then the
following are equivalent:

(a) p is the maximal ideal in R; |
(b) there exists a monic polynomial f(T') € R[T) such that f(Xy) € M for all

1<k<n;
() R/p C R[X,,...,Xn]/Mis aliberal extension.
Proof. (a) = (b) Induction. Denote

A=R/p— R[X1,...,Xn]/M=B=Alz,..., ]

where z,,...,z, are the images of X;,..., X,, respectively, and these elements are
from the centre of B.
Case n = 1 is trivial. Let n € N. If all z,...,z,41 are algebraic over A

then statement (b) is evidently true. Indeed, then all xj, satisfy the monic polynomial
gx(T') € A[T)]. Lifting the product g; - - - g, to a monic polynomial f(T) € R[T] we
obtain that f(Xx) € 91, 1 < k < n. Let some element, say z;, be transcendental over
A. If the field F' is the centre of A, and S the multiplicative set of nonzero elements of
the ring F'[z;] then the central localization A[z,]s C B is the simple ring canonically
isomorphic to A(z;) = A ®F F[z1]. By inductive hypothesis, elements z,, ..., T 41
satisfy a monic polynomial over A[z;|s, so these elements satisfy a monic polynomial
over A[x]|n, where h = h(z;) € F[z,] is non constant central polynomial. So B is a
liberal extension of A[x1], and by Lemma 2.2(2), A[z1], is a simple ring. But this is
impossible. Indeed, the ideal in F'[z;] generated by nonconstant polynomial h — 1 is a
nonzero proper ideal which does not contain h. So maximal ideal of F'[z;] containing
h — 1 does not contain h™, n € N and its extension in A[x;] is also a proper nonzero
ideal which does not contain h™, n € N because A is a simple ring. A contradiction with
an assumption that x; is transcendental over A.
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Evidently, (c) follows from (b).
(¢) = (a) The simple ring S is a liberal extension of the ring .A. By Lemma 2.2(2),
this implies that A is also a simple ring, so the ideal p = 9t N R is maximal.

Theorem 2.5. Let M C R[ X, ..., X,] be a maximal ideal and p = M N R. If p is not
maximal in R then the intersection of all nonzero prime ideals in R/p is not zero.

Proof. Using Lemma 2.2(1)(ii) and notations above we have
A=R/pCQ(A) = R[Xy,..., X,|/M=B=Alzy,...,z.)=Q(A)[z1, ..., Ty]

where (A is the central closure of the ring A. By Theorem 2.4(b) all elements z
satisty the monic polynomial over the simple ring Q(.A), so they satisfy the monic poly-
nomial over Alpy, ..., ¢m] C Q(A), where elements ¢y, . . ., ., are from the extended
centroid of the ring A. By Theorem 2.4(c), Afp, ..., ¥m] is the simple ring and coin-
cides with Q(.A). So by Lemma 2.1 and Lemma 2.2(2) the intersection of all nonzero
prime ideals of A is nonzero.

3. Noncommutative Hilbert rings

We call aring R a Hilbert ring if every strongly prime ideal is the intersection of maximal
ideals. This is obviously equivalent to require that in each factor ring of R the strongly
prime radical coincides with the Brown-McCoy radical. From this it is clear that any
factor ring of a Hilbert ring is again Hilbert. Since in commutative rings strongly prime
ideals are precisely prime ideals, this extends the notion of commutative Hilbert rings.
Moreover, the class of Hilbert rings contains the Brown-McCoy rings considered in [14]
and also the Jacobson PI rings considered in [1] and [11].

Since, by Theorem 2.5 in [8], strongly prime ideals are preserved under Morita equi-
valence, it follows that the property to be a Hilbert ring is preserved under Morita equi-
valence.

The importance of this notion is based on the following characterizations.

Theorem 3.1. For any ring R the following are equivalent:

(a) Risa Hilbert ring;

(b) for each n € N and any maximal ideal 9 of R[X,, . .., X, the contraction
I N R is a maximal ideal of R,

(c) for each n € N and every maximal ideal M of R[ X ..., X,,|, there exists a
monic polynomial f(T') € R[T), such that f(Xy) € M, for1 < k < n;

(d) for each n € N and every maximal ideal Mt C R[ X, ..., X,], the extension
R/MNR — R[X,...,X,]/Mis liberal;

(e) every strongly prime ideal p C R is maximal or is the intersection of prime
ideals properly containing p;
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(f) the polynomial ring R[X)] is a Hilbert ring.

Proof. Evidently, by Theorems 2.5 and 2.4 (a) = (e) = (b).

(b) = (a) Let M,, a € I, be the family of maximal ideals of the polynomial ring
R[X;,..., X,]. We have:

RN BMc(R[Xy, ..., X,])) = RO ([(|Ma) = [ (RNDM,) = BMc(R),

x 16/

because all ideals R N9 are maximal in R, and each maximal ideal of R can be obtained
in this way. So, by Theorem 2.3, SP(R) = BMc(R). Since (b) also holds for each factor
ring of the ring R, so does (a) and R is a Hilbert ring.

The equivalence (b) < (c) < (d) follows easily from Theorem 2.4.

(a) = (f) Since we already know that (a) and (d) are equivalent, it suffices to
show that R[X]| satisfies (d). Take a maximal ideal M C R[X, X1, ..., X,]. By (d), an
extension R/M N R — R[X, Xy,..., X,]/9 is liberal, so an extexsion R[X]/9M N
R[X] — R[X, X,,...,X5]/M is also liberal. So R[X] satisfies (d) and is a Hilbert
ring. Since factor rings of the Hilbert rings are again Hilbert, we obtain that (f) = (a).

So we obtain the following corollary which may be considered as a general symmetric
noncommutative form of Hilbert’s Nullstellensatz, see [3, Theorem 4.19].

COROLLARY 3.2. If R is a Hilbert ring, then the ring R[X1, ..., X,] is also a Hil-
bert ring. In this case, for each maximal ideal M C R[Xj,..., X,], the factor ring
R[ Xy, ..., Xn]/Mis a central liberal extension of the simple ring R/ N R.

The following definition of integral homomorphisms and integral extensions in Pro-
cesi category and their main properties are considered in [7]. A centred ring homomorp-
hism ¢: R — S'is called an integral homomorphism if every finite subset {s1,-..,8n} C
S is contained in some subring A C S which is a liberal extension of the ring ¢(R), i.e., A
is generated as a canonical R—module by a finite set of R—centralizing elements. In this
case S is called an integral extension of R via ¢. In the commutative case this definition
1s equivalent to the classical definition of an integral homomorphism. Evidently, liberal
extensions of rings are integral, and each integral extension is the inductive limit of libe-
ral extensions. It is clear that an integral extensions of a field are precisely locally finite

algebras over this field. The following fundamental properties are shown in the theorems
9,10 and 11 of [7].

Lemma 3.3. Let R C S be a centred integral extension.

(1) For any strongly prime ideal p there exists a strongly prime q in S such that
q N R = p (lying over).
(2) If Ris simple and S is strongly prime, then S is simple.
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(3) Consider ideals @ C A in S such thatqN R = AN R. If q is a strongly prime
ideal then q = A (incomparability).

This allows us to prove our final result generalising the commutative case.

Theorem 3.4. Let R CS be an integral extension of rings. Then S is a Hilbert ring if and
only if S is a Hilbert ring.

Proof. Let S be a Hilbert ring and p C R a strongly prime ideal. By 3.3(1), there exists
a strongly prime ideal ¢ C S lying over p. So q is an intersection of maximal ideals in S.
Because the contraction of a maximal ideal in .S is a maximal ideal in R, we obtain that
p is the intersection of maximal ideals, so R is a Hilbert ring.

Let R be a Hilbert ring. If ¢ C S is a strongly prime ideal, then q N R is a strongly
prime ideal in R. Going to factor rings, we reduce the proof to the case of an integral
extensions of strongly prime rings. Take a nonzero element s € S. By 3.3(3), an ideal
(s) intersects nontrivially with R. So we can find a maximal ideal m C R which does no
tcontain (s) N R. Now, by 3.3(2), an ideal lying over m is a maximal ideal in S which
does not contain (s). This means, that the intersection of maximal ideals in S is zero, SO
S is a Hilbert ring.
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Irodytas nekomutatyvus simetrinis Hilberto Nullstellensatz varijantas. Gautos pagrindinés ne-
komutatyviyjy Hilberto Ziedy charakteristikos



