Weighted discrete limit theorems for general Dirichlet polynomials

Renata MACAITIENĖ (VU)

e-mail: renata.macaitiene@mif.vu.lt

Let

$$p_n(t) = \sum_{m=1}^n a_m e^{i\lambda_m t},$$
$$q_n(s) = \sum_{m=1}^n a_m e^{-\lambda_m s}, \quad s = \sigma + it,$$

be a general Dirichlet polynomials with complex-valued coefficients a_m and real exponents λ_m . Zeta-function usually are approximated by Dirichlet polynomials, therefore limit theorems for these polynomials is the first step to obtain limit theorems for zeta-functions. Continuous limit theorems for Dirichlet polynomials an be found in [3]. In this case the weak convergence of probability measures

$$\frac{1}{T}\operatorname{meas}\{t\in[0,T]:p_n(t)\in A\},\$$

and

$$\frac{1}{T}\operatorname{meas}\{\tau\in[0,T]:q_n(s+i\tau)\in A\},\$$

on the complex plane and on the space of analytic functions is considered. Here meas $\{A\}$ denotes the Lebesque measure of the set A. In the case of discrete limit theorems the probability measures

$$\frac{1}{N+1} \# \{ 0 \leqslant k \leqslant N \colon p_n(kh) \in A \}$$

and

$$\frac{1}{N+1}\#\{0\leqslant k\leqslant N\colon q_n(s+ikh)\in A\},$$

where h > 0 is a fixed number, are studied.

In [4] discrete limit theorems for $p_n(t)$ and $g_n(s)$ were proved, and the explicit form of limit measures was given, see also [2]. The aim of this note is to obtain weighted discrete limit theorems for general Dirichlet polynomials.

Let w(u) be a positive function of bounded variation on $[0, +\infty)$ and we set

$$U = U(N, w) = \sum_{m=0}^{N} w(m).$$

Suppose that $\lim_{N\to\infty} U(N, w) = \infty$. Moreover, let, for positive integer N,

$$\mu_N(\ldots) = \sum_{\substack{m=0\\ \ldots}} w(m),$$

where in place of dots a condition satisfied by m is to be written. We suppose, as in [4], that the exponents λ_m are real algebraic numbers linearly independent over the field of rational numbers, and that h > 0 be such that $\exp\left\{\frac{2\pi}{h}\right\}$ is a rational number. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, and let \mathbb{C} be the complex plane. We set

$$\Omega_n = \prod_{m=1}^n \gamma_m,$$

where $\gamma_m = \{s \in \mathbb{C} : |s| = 1\}$ for all m = 1, ..., n. Define a function $v : \Omega_n \to \mathbb{C}$ by the formula

$$v(x_1, ..., x_n) = \sum_{m=1}^n a_m x_m, \quad (x_1, ..., x_n) \in \Omega_n,$$

and denote by m_{nH} the probability Haar measure on $(\Omega_n, \mathcal{B}(\Omega_n))$.

Theorem 1. The probability measure

$$P_N(A) = \mu_N(p_n(mh) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to the measure $m_{nH}v^{-1}$ as $N \to \infty$.

Let G be a region on \mathbb{C} . Denote by H(G) the space of analytic on G functions with the topology of uniform convergence on compacta. Define a function $v_1: \Omega_n \to H(G)$ by the formula

$$v_1(x_1,...,x_n) = \sum_{m=1}^n a_m e^{-\lambda_m s} x_m^{-1}, \quad (x_1,...,x_n) \in \Omega_n.$$

Theorem 2. The probability measure

$$Q_N(A) = \mu_N(q_n(s + imh) \in A), \quad A \in \mathcal{B}(H(G)),$$

converges weakly to the measure $m_{nH}v_1^{-1}$ as $N \to \infty$.

We begin the proof of Theorems 1 and 2 with the following lemma.

Lemma 1. The probability measure

$$\mu_N((e^{i\lambda_1 m h}, ..., e^{i\lambda_n m h}) \in A), \quad A \in \mathcal{B}(\Omega_n),$$

converges weakly to the Haar measure m_{nH} as $N \to \infty$.

Proof. Denote by $g_N(k_1, ..., k_n), (k_1, ..., k_n) \in \mathbb{Z}^n$, and \mathbb{Z} is the set of all integers, i.e., [3]

$$g_N(k_1,...,k_n) = \int_{\Omega_n} x_1^{k_1}...x_n^{k_n} dQ_n, \quad (x_1,...,x_n) \in \Omega_n.$$

Then we have that

$$g_N(k_1, ..., k_n) = \frac{1}{U} \sum_{m=0}^N w(m) \exp\{imh \sum_{l=1}^n k_l \lambda_l\}.$$
 (1)

If $(k_1, ..., k_n) = (0, ..., 0)$, clearly, $g_n(k_1, ..., k_n) = 1$. Now suppose that $(k_1, ..., k_n) \neq (0, ..., 0)$, and let

$$S_N(k_1, ..., k_n) = \sum_{m=0}^{N} \exp\{imh \sum_{l=1}^{n} k_l \lambda_l\}$$

Since the exponents λ_n are real algebraic numbers linearly independent over the field of rational numbers, we have [4]

$$S_N(k_1, ..., k_n) = \frac{1 - \exp\{i(N+1)h\sum_{l=1}^n k_l\lambda_l\}}{1 - \exp\{ih\sum_{l=1}^n k_l\lambda_l\}}.$$

Obviously, for all $u \ge 0$,

$$\frac{1 - \exp\{i(N+1)h\sum_{l=1}^{n} k_l\lambda_l\}}{1 - \exp\{ih\sum_{l=1}^{n} k_l\lambda_l\}} = B.$$

Where B denotes a quantity bounded by a constant. Hence, summing by parts and taking into account that w(u) is a function of bounded variation, we find that

$$\sum_{m=0}^{N} w(m) \exp\{imh \sum_{l=1}^{n} k_l \lambda_l\} = w(N)S(N) - \int_0^N S(u) \, \mathrm{d}w(u) = B.$$

This and (1) shows that

$$\lim_{N \to \infty} g_N(k_1, ..., k_n) = \begin{cases} 1, & (k_1, ..., k_n) = (0, ..., 0), \\ 0, & (k_1, ..., k_n) \neq (0, ..., 0). \end{cases}$$

Thus we obtained that the Fourier transform of the measure Q_N converges to the Fourier transform of the Haar measure on Ω_N as $N \to \infty$. Therefore, by Theorem 1. 3. 19 from [3], the measure Q_N weakly converges to $m_n H$ as $N \to \infty$. The lemma is proved.

Proof of Theorem 1. By the definition of the function v we have that

$$p_n(mh) = v(e^{i\lambda_1 mh}, \dots, e^{i\lambda_n mh}),$$

moreover, the function v is continuous. Therefore, by Theorem 5.1 of [1] and Lemma 1 the measure of the theorem converges weakly to the measure $m_{nH}v^{-1}$ as $N \to \infty$.

Proof of Theorem 2. The definition of the function v_1 implies

$$q_n(s+imh) = v_1(e^{i\lambda_1mh}, \dots, e^{i\lambda_nmh}),$$

and the function v_1 is continuous. Therefore, using Lemma 1 again, we obtain the theorem.

Now let

$$p_n(t,g) = \sum_{m=1}^n a_m g(m) e^{i\lambda_m t},$$
$$q_n(s,g) = \sum_{m=1}^n a_m g(m) e^{-\lambda_m s}.$$

where g(m) is an arbitrary arithmetic function, |g(m)| = 1. Then we have the following statements.

Theorem 3. The probability measures P_N and

$$\widehat{P}_N(A) = \mu_N(p_n(mh, g) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

both converge weakly to the same limit measure, i.e., to $m_{nH}v^{-1}$ as $N \to \infty$.

Theorem 4. The probability measures Q_N and

$$\widehat{Q}_N(A) = \mu_N(q_n(s + imh, g) \in A), \quad A \in \mathcal{B}(H(G)),$$

both converge weakly to the same limit measure, i.e., to $m_{nH}v_1^{-1}$ as $N \to \infty$.

Note that if $w(u) \equiv 1$, then we obtain the theorems from [4].

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).
- [2] R. Kačinskaitė, Discrete limit theorems for trigonometric polynomials, in: Proc. of XL Conf. of Lith. Math. Soc., 3 (a spec. suplement of Liet. matem. rink.), Vilnius (1999), pp. 44–49.
- [3] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht (1996).
- [4] R. Macaitienė, Discrete limit theorems for general Dirichlet polynomials, *Liet. Matem. Rink.*, 42 (spec. issue), 705–709 (2002).

Diskrečios ribinės teoremos su svoriu bendriesiems Dirichlet polinomams

R.Macaitienė

Įrodytos diskrečios ribinės teoremos su svoriu bendriesiems Dirichlet polinomams silpno matų konvergavimo prasme. Pateiktas išreikštinis ribinių matų pavidalas. Gauti rezultatai apibendrina autorės teoremas, kai svorio funkcija w(u) = 1.