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Let G be a commutative multiplicative semigroup with identity element 1, which
contains a countable subsetP such that every elementa �= 1 admits unique factorization
into a finite product of powers of elements ofP. Suppose that the completely additive
degree functionδ: G → N ∪ {0} such thatδ(p) � 1 for eachp ∈ P is defined. The
main assumption on the semigroupG accepted in this paper is the following asymptotic
formula.

Condition P. For some γ > 2,

π(j) :=
∣∣{p ∈ P: δ(p) = j

}∣∣ =
qj

j
+ O

(
qj

j logγ(j + 1)

)
, j � 1.

The corollary of Theorem 3 in [5] shows that ConditionP implies

|Gn| :=
∣∣{a ∈ G: δ(a) = n}

∣∣ = Aqn + O
(
qn log2−γ n

)
.

The class of arithmetical semigroups satisfying Condition P contains the semigroup of
monic polynomials over a finite field and many other examples listed in [2] as well.

Let νn be the uniform probability measure on the setGn. If αp(a) denotes the multi-
plicity of a prime elementp ∈ P in the canonical product representation ofa ∈ G, then
νn(αp(a) = k) ∼ p−kδ(p) for k ∈ N asn → ∞. In other words,αp(a) is asymptotically
distributed as the geometric random variableξp with P (ξp � 1) = q−δ(p). Moreover,
αp(a), p ∈ P, are dependent random variables (r. vs) with respect toνn. So, a function
h: G → R (later calledadditive) having the expression

h(a) =
∑
p∈P

hp(αp(a))

for some double sequence{hp(k)} with the propertyhp(0) ≡ 0, wherep ∈ P and
k � 0, can be regarded as the sum of dependent r. vs. Nevertheless, dealing with its
distribution, we can achieve results close to that known for sums independent r. vs. In
this remark, we demonstrate such possibilityby obtaining an analog of the Kolmogorov-
Rogozin inequality for the Lévy concentration function

Qn(l) = sup
x∈R

νn(x � h(a) < x + l), l � 0.
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Note that
∑

p∈P αp(a)δ(p) = δ(a) = n if a ∈ Gn. The functions proportional toδ(a)
can appear as components in an additive function under consideration. This phenomenon
is taken into account in the formulation of our result. Recently the author [4], using the
ideas of I.Z. Ruzsa [6], obtained a similar estimate for the concentration function of an
additive functions defined on the symmetric group. We now exploit this experience.

Letx∧y = min(x, y). For an additive functionh(a) andλ ∈ R, we sethp(1) = a(p),

Dn(l; λ) =
∑

δ(p)�n

l2 ∧ (a(p) − λδ(p))2

qδ(p)
, Dn(l) = min

λ∈R
Dn(l; λ).

Throughout the paperc, c1, . . . , C, C1, . . . will denote positive constants depending on
q and the constant in the remainder of Condition P. The main result of the paper is the
following theorem.

Theorem. We have

Qn(l) � Cl(Dn(l))−1/2.

Of course, ifDn(l) = o(l2) asn → ∞, the trivial estimateQn(l) � 1 is better.
Observe that the Kolmogorov–Rogozin theorem (see [1]) applied for the sum

Sn :=
∑

δ(p)�n

hp(ξp),

whereξp are the above mentioned independent geometrically distributed r. vs, yields the
estimate

sup
x∈R

P (x � Sn < x + l) � C1l(Dn(l; 0))−1/2.

Thus, with a successful choice ofλ, our concentration estimate forh(a)− λδ(a) is com-
parable with that forSn.

Proof of Theorem is split into a few steps.
1. It suffices to deal withQn(1) only. By Lemma 2.2.1 of [1], we have

Qn(1) � C2

|Gn|

∫ 1

−1

∣∣∣∣
∑

a∈Gn

e2πith(a)

∣∣∣∣ dt.

2. SetT = R/Z. This group may be identified with the additive group of real numbers
in the interval[0, 1) with addition modulo one.

Lemma 1. Set

m(u, t) :=
∑

δ(p)�n

1 − cos 2π
(
a(p)t− uδ(p)

)
qδ(p)

, t ∈ R, u ∈ T.
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Then∣∣∣∣ 1

|Gn|
∑

a∈Gn

e2πith(a)

∣∣∣∣ � C3 exp
{
− cmin

u∈T
m(u, t)

}
.

Proof. Let f(a) := e2πith(a), fp(k) := e2πithp(k), and|z| � 1. Then

∑
a∈G

f(a)(q−1z)δ(a) =
∞∑

n=0

(
q−n

∑
δ(a)=n

f(a)

)
zn

=
∏
p∈P

(
1 + fp(1)(q−1z)δ(p) + fp(2)(q−1z)2δ(p) + · · ·

)

:= H(z) exp

{∑
p∈P

fp(1)(q−1z)δ(p)
}

= H(z) exp

{ ∞∑
j=1

(
jq−j

∑
δ(p)=j

fp(1)

)
zj

j

}
.

An appropriate estimate of then-th Taylor coefficient of such type series has been obtai-
ned in Theorem of author’s remark [3]. Condition P above assures its applicability. We
leave the details for the reader. Lemma 1 is proved.

So, we can conclude this step by the estimate

Qn(1) � C4

∫ 1

−1

exp

{
− cmin

u∈T
m(u, t)

}
dt. (1)

3. To evaluate the last integral, we apply the arguments originated in the papers [4]
and [6]. Set

Xk = {t ∈ [−1, 1]: min
u∈T

m(u, t) � k}, k = 1, 2, . . ..

These sets are nonempty measurable, symmetric with respect to the origin, and having
the Lebesgue measureµk := meas(Xk) > 0. The main task is to obtain a satisfactory
estimate of this measure.

Lemma 2. If X ⊂ [−1, 1] is a set of positive Lebesgue measure, symmetric to the
origin and containing it, then we have

Xr := {x1 + · · ·+ xr: x1, . . . , xr ∈ X} ⊃ [−1, 1]

provided that r = [12/meas(X)].
Proof see in [6].
Lemma 3. If r � 12/µk, then, for every t ∈ [−1, 1], there exist u1, . . . , ur ∈ T such

that

m(u, t) � kr2 (2)



Value concentration of additive functions on semigroups 73

with u = u1 + · · ·+ ur mod 1 .
Proof. Apply Lemma 2 withX = Xk and the inequality

1 − cos(x1 + · · ·+ xr) � r
(
(1 − cosx1) + · · ·+ (1 − cos xr)

)
, xj ∈ R. (3)

Lemma 3 is proved.
Thus, by (2), to get an upper estimate ofµk, we have to concentrate on the the values

of u = u(t) ∈ T for which m(u, t) attains its minimum. The standard analysis, via a
criteria for implicit functions shows thatu(t) is well defined continuous function in some
nontrivial neighborhood of the pointt = 0, u(0) = 0. Beyond it, if several values ofu(t)
appear for a fixedt, we can choose the smallest of them and so obtain the functionu(t)

defined on the whole interval [-1,1] and taking values inT.
4. We now relateu(t) with a homomorphism of the additive groupR to T. Observe

that the groupT is the complete metric space with respect to the metric defined via the
distance to the nearest integer‖x‖ = {x}∧ (1−{x}) which is not a norm. Nevertheless,
the solution of the approximate Cauchy equation with respect to it has similar properties
as in Banach spaces.

Lemma 4. Let v: [−1, 1] → T be continuous at the point t = 0 function, v(0) = 0.
Suppose that, for some 0 < η < 1/18, we have ‖v(t1+t2)−v(t1)−v(t2)‖ � η whenever
t1, t2, t1 + t2 ∈ [−1, 1]. Then ‖v(t) − λt‖ � 3η for some λ ∈ R and all t ∈ [−1, 1].

Proof see [4].
Lemma 5. Let m(u, t) and u(t) be the above defined functions and r be as in Lemma

3. Then, for some λ ∈ R, we have m(λt, t) � 20kr2 +C5 uniformly in t ∈ [−1, 1].
Proof. For ρ := e−1/n, set

Ψ(y) :=
∞∑
j=1

1 − cos 2πjy

j
ρj =

1

2
log

(
1 +

4ρ

(1 − ρ)2
sin2 πy

)

and observe thatΨ(θx) � Ψ(x) + C6 uniformly in 0 � θ � 10. Moreover (see [4] for
details),

∣∣∣∣
n∑

j=1

1 − cos 2πjy

j
− Ψ(y)

∣∣∣∣ � 3.

Hence, via Condition P, we obtain|m(y, 0) − Ψ(y)| � C7 and

m(θy, 0) � m(y, 0) + C8. (4)

We now return to inequality (2). By the definition ofu(t), we have

m(u(t), t) � kr2 (5)

as well. Set

α = sup{‖u(t1 + t2) − u(t1) − u(t2)‖: t1, t2, t1 + t2 ∈ [−1, 1]}.
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If α = 0, then by Lemma 4,‖u(t) − λt‖ = 0 and the task is done. Ifα > 0, we chose
t1, t2, t1 + t2 ∈ [−1, 1] so that

β := ‖u(t1 + t2) − u(t1) − u(t2)‖ � 9

10
α.

For arbitraryt ∈ [−1, 1], by Lemma 4 withη = α, we haveβ1 := ‖u(t) − λt‖ � 9α �
10β. Since the first inequality is trivial forα � 1/18, here applying Lemma 4, we have
avoided the condition onα. Now, by (4), (3), and (5), we obtain

m(β, 0) � 3

(
m(u(t1+t2), t1+t2)+m(u(t1), t1)+m(u(t2), t2)

)
� 9kr2. (6)

Further by (3), (4), and (6), we arrive at

m(λt, t) � 2m(u(t), t) + 2m(β1, 0) � 2kr2 + 2m(β, 0) + 2C8 � 20kr2 + C9.

Lemma 5 is proved.
5. This is the final step of the proof of Theorem. Integrating over[0, 1] the function

m(λt, t) and using the inequality obtained in Lemma 5 together with the estimate1 −
(sinx)/x � c1 min{1, x2}, wherex ∈ R, we obtainDn(1, λ) � C10kr

2. Hence,µk �
C11

(
k/Dn(1)

)1/2
. This and (1) imply

Qn(1) � C4

∑
k�1

e−c(k−1)µk � C12(Dn(1))−1/2.

The theorem is proved.
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Pusgrupi ↪u adityvi ↪uj ↪u funkcij ↪u reikšmi ↪u koncentracija

E. Manstavičius

Nagrinėjama adityvi↪uj ↪u funkcij ↪u, apibrėžt↪u aritmetiniuose pusgrupiuose, reikšmi↪u koncentra-
cija. Levy koncentracijos funkcijai↪irodytas Kolmogorovo-Rogozino nelygyb˙es analogas.


