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Let G be a commutative multiplicative semigroup with identity element 1, which
contains a countable subgesuch that every element=£ 1 admits unique factorization
into a finite product of powers of elements Bf Suppose that the completely additive
degree functiort: G — N U {0} such thaté(p) > 1 for eachp € P is defined. The
main assumption on the semigroGpaccepted in this paper is the following asymptotic
formula.

Condition P. For somey > 2,

N PR ¢ .
7= e B o) =} | = L+ O( ity )+ i3 L

The corollary of Theorem 3 in [5] shows that ConditiBrimplies
|Gn| = |{CL € G: (S(a) = n}| = Aq" + O(q" 10g2_7n).

The class of arithmetical semigroups satisfyCondition P contains the semigroup of
monic polynomials over a finite field and many other examples listed in [2] as well.

Let v, be the uniform probability measure on the &gt If a,(a) denotes the multi-
plicity of a prime elemenp € P in the canonical product representatiomof G, then
Un(ap(a) = k) ~ p~#8®) for k € Nasn — oc. In other wordsg, (a) is asymptotically
distributed as the geometric random variagjewith P(¢, > 1) = ¢~%(®). Moreover,
ap(a), p € P, are dependent random variables (r. vs) with respeg}, t&o, a function
h: G — R (later calledadditive) having the expression

h(a) = Z hp(ap(a))
pel

for some double sequendg,,(k)} with the propertyh,(0) = 0, wherep € P and

k > 0, can be regarded as the sum of dependent r. vs. Nevertheless, dealing with its
distribution, we can achieve results close to that known for sums independent r. vs. In
this remark, we demonstrate such possibbyobtaining an analog of the Kolmogorov-
Rogozin inequality for the Lévy concentration function

Qn(l) = sup vp(xr < h(a) <z +1), 1=0.
mER
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Notethat S p oy (a)o(p) = 6(a) =nif a € G,. The functions proportional i a)
can appear as components in an additive function under consideration. This phenomenon
is taken into account in the formulation of our resuled@ntly the author [4], using the
ideas of I.Z. Ruzsa [6], obtained a similar estimate for the concentration function of an
additive functions defined on the symmetric group. We now exploit this experience.

Letz Ay = min(x, y). For an additive functioh(a) and\ € R, we seth, (1) = a(p),

Dy = Y EA® N )i, ).

8(p) '
s(p)<n 1 reR

Throughout the papef, ¢y, ..., C, Cy, ... will denote positive constants depending on
g and the constant in the remainder of Condition P. The main result of the paper is the
following theorem.

Theorem. We have

Qn(l) < CU(Dy (1) V/2,

Of course, ifD,,(I) = o(I?) asn — oo, the trivial estimateQ,,(I) < 1 is better.
Observe that the Kolmogorov—Rogozin theorem (see [1]) applied for the sum

> hy(&),

s(p)n

where¢, are the above mentioned independent geometrically distributed r. vs, yields the
estimate

sup P(z < S, <z +1) < C1l(D,(1;0))"Y/2.
mER

Thus, with a successful choice df our concentration estimate fbfa) — Aé(a) is com-
parable with that fors,, .

Proof of Theoremis split into a few steps.

1. It suffices to deal witl®),, (1) only. By Lemma 2.2.1 of [1], we have

2mith (a)

Qn(l) <

IGnI

2. SetT = R/Z. This group may be identified with the additive group of real numbers
in the intervall0, 1) with addition modulo one.
Lemmal. Sat

1 — cos 2w (a(p)t — ud(p)
m(u,t) = Z E]‘S(p) ) , tcR, wuwcT.
s(p)<n
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Then

1 Z 2mith(a)
—_— €
|Gl

acG,

< Cyexp { — cminm(u, t)}.
ueT

Proof. Let f(a) := ™M) f (k) := ™t (k) "and|z| < 1. Then

S faa @ =Y (¢ ¥ s@)e

acG n=0 5(a)=n

11 (1 O + 1) 0+ )

pelP exp{g%fp 6(;0)}
=H<z>exp{le( '3 a0 )}

An appropriate estimate of theth Taylor coefficient of such type series has been obtai-
ned in Theorem of author’s remark [3]. Condition P above assures its applicability. We
leave the details for the reader. Lemma 1 is proved.

So, we can conclude this step by the estimate

1
Qn(1) < C4/ exp{ - cminm(u,t)} dt. Q)
-1 ueT
3. To evaluate the last integral, we apply the arguments originated in the papers [4]
and [6]. Set

X, ={t € [-1,1]: minm(u,t) <k}, k=1,2,....
U,ET
These sets are nonempty measurable, symmetric with respect to the origin, and having
the Lebesgue measurg := meas(Xj) > 0. The main task is to obtain a satisfactory
estimate of this measure.
Lemma2. If X C [-1,1] isa set of positive Lebesgue measure, symmetric to the
origin and containing it, then we have

X' ={z1+ -+ x1,...,2, € X} D[-1,1]
provided that » = [12/meas(X)].
Proof see in [6].

Lemma3. If r > 12/u, then, for every ¢t € [—1, 1], thereexist uq, ..., u, € T such
that

m(u,t) < kr? (2)
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withu =uy +---+u, mod 1.
Proof. Apply Lemma 2 withX = X}, and the inequality

1—cos(zy + -+ +z) <r((l—coszy)+ -+ (1 —cosw,)), z; R (3)

Lemma 3 is proved.

Thus, by (2), to get an upper estimate.qf we have to concentrate on the the values
of u = u(t) € T for which m(u,t) attains its minimum. The standard analysis, via a
criteria for implicit functions shows that(t) is well defined continuous functionin some
nontrivial neighborhood of the point= 0, «(0) = 0. Beyond it, if several values off(t)
appear for a fixed, we can choose the smallest of them and so obtain the funefion
defined on the whole interval [-1,1] and taking value&in

4. We now relate:(t) with a homomorphism of the additive grolipto T. Observe
that the grouf is the complete metric space with respect to the metric defined via the
distance to the nearest integer| = {z} A (1 — {z}) which is not a norm. Nevertheless,
the solution of the approximate Cauchy equation with respect to it has similar properties
as in Banach spaces.

Lemmad4. Let v: [—1,1] — T be continuous at the point ¢ = 0 function, v(0) = 0.
Supposethat, for some0 < n < 1/18, wehave ||v(t1 +t2) —v(t1) —v(t2)|| < 1 whenever
ti,to,t1 +to € [=1,1]. Then |Ju(t) — At|| < 3pforsome A e Randall ¢t € [-1,1].

Proof see [4].

Lemmab. Let m(u, t) and u(t) be the above defined functionsand r be asin Lemma
3. Then, for some A € R, we have m(\t, t) < 20kr? + Cs uniformlyint € [—1,1].

Proof. For p := e~ /", set

U(y) i 1= cos2mjy 27ij,oj L log (1 + 1p sin? 7ry>
y = - = — S
j 2 (1—p)?

j=1

and observe tha? (x) < ¥(z) + Cs uniformly in 0 < 6 < 10. Moreover (see [4] for
details),

n

1 —cos27mj
ZM—%)‘@-
J

j=1
Hence, via Condition P, we obtajm(y, 0) — ¥(y)| < C7 and
m(0y,0) < m(y,0) + Cs. (4)
We now return to inequality (2). By the definition oft), we have
m(u(t),t) < kr? (5)
as well. Set

o= sup{Hu(tl + tg) — u(tl) — u(tg)H: t1,ta,t1 +12 € [—1, 1]}
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If & = 0, then by Lemma 4)ju(t) — At|| = 0 and the task is done. & > 0, we chose
t1,ta,t1 + 1o € [—1, 1] so that

9
B = llulty +t2) —ults) —ult2)l| > 5o
For arbitraryt € [—1, 1], by Lemma 4 withy = «, we haves; := |Ju(t) — || < 9a <
10. Since the first inequality is trivial fot. > 1/18, here applying Lemma 4, we have
avoided the condition oa. Now, by (4), (3), and (5), we obtain

m(ﬁ, O) <3 (m(u(t1 —l—tg), t +t2)—|—m(u(t1), tl)—l-m(u(tg), t2)> < 9](37”2. (6)

Further by (3), (4), and (6), we arrive at
m(Mt, 1) < 2m(u(t),t) + 2m(B1,0) < 2kr? + 2m(B,0) + 2Cs < 20kr? + Cy.

Lemma 5 is proved.

5. This is the final step of the proof of Theorem. Integrating doet] the function
m(At,t) and using the inequality obtained in Lemma 5 together with the estiinate
(sinx)/x > ¢y min{1, 22}, wherex € R, we obtainD,,(1, \) < Ciokr?. Henceux <
Ch1(k/ D (1)) "% This and (1) imply

Qn(1) < Ca Yy e *F Dy < Cra(Dn (1)) 2,
k=1

The theorem is proved.
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Pusgrupiu adityviuju funkciju retkSmiu koncentracija
E. Manstawtius

Nagrirgjama adityviju funkciju, apibezy aritmetiniuose pusgrupiuose, reik§nkioncentra-
cija. Levy koncentracijos funkcijafodytas Kolmogorovo-Rogozino nelyggb analogas.



