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On the zeros of a new zeta-function
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1. Introduction

As usual, lets = o + it be a complex variable. Further, letand/ be positive integers
such thak and4/ are coprime. We writg(x) = O(g(z)) andf(z) < g(zx), resp., when
the estimatef(x)| < Cg(z) holds for all larger and some absolute constantFinally,
we define byr(n) the number of representations of a positive integes a sum of two
integer squares. Then we consider the following Dirichlet series

R (s; 4%) - i TT(;’) exp (2mz—’;> . 1)

n=1

The functionR (s; 4%) was introduced in [4],where a truncated Voronoi-type formula for

the twisted Mdbius transform

> r(n)exp (mi—?)

n<x

was proved. In this paper we continue to study the properties of the Dirichlet series
R (s; &) and present some results on the zero distribution.
It is well-known that

r(n) =43 x(d).

d|n

where

()= if d=1mod 2,
0 if d=0mod 2.

x is the non-principal character moduldland thus completely multiplicative). Hence,
we obtain

r(n) < 4d(n) < n, 2)

whered(n) is the divisor function and denotes an arbitrarily small positive number.
Consequently, the series (1) converges absolutely in the half-pland. In [4] it was
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proved that the functio® (s; 4e) has an analytic continuation throughout the complex
plane except for a simple pole at= 1, and that it satisfies the functional equation

(R(-eE) (1) o

wherek* is given bykk* = 1 mod 4¢. This functional equation is very similar to the

one for the Estermann zeta-function, and, as we shall show in the sequel, also its zero
distribution is comparable to the one of the Estermann zeta-function (for which we refer
to [3]).

2. Zerodistribution

Denote the zeros R (s; &) by p = 3 + iv. In view of (2) we find for sufficiently
largeo

k k r(n) 4d(n) Rl
— ] — — < < E—0O
‘R (s, 4€> 4exp (27724€>‘ < g oo S E v <</1 x* 7%z

n=2 n=2

Hence, agr — oo,

R ( f€> = dexp (2m'4%> +0 G) . (4)

Consequently, there exists a positive constsuch that

R(s;%)#o for o> C. (5)

Notice thatC' can be estimated explicitly by elementary means; for instance, the rather
trivial estimated(n) < n leads toC = 3. By the functional equation (3) and the non-

vanishing of the Gamma-functio??,( S; 44) vanishes if and only if

k* —k*
R(l—s, 4—€> = cos(ms)R (1 ~ S )

Therefore, with the estimate (4) and the zero-free region (5), it follows that forl — C
the functionkR ( s; 44) can only have zeros close to the negative real axis. We call geros

of R (s; 45) with 3 < 1 — C trivial. In [4] it was shown that for any positive integer

k
R(l—n 4€> =0.
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We call other zeros of/(s; z , ) nontrivial. By the above and the zero-free region (5)
the nontrivial zeros lie in the vertical strip

1-C<o<C. (6)
Applying ideas of Littlewood [2] and Levinson and Montgomery [1] we will prove

Theorem 1. Let B > C' + 1 be a constant. Then, & — oo,

T. 2T¢
> (B+p) = (2B +1) —log — + O(log 7).

B>—-B

[vI<T
Denote byN (T; %) the number of nontrivial zeros of R (s; 4) with |y| < T (accor-
ding multiplicities). Using the formula of Theorem 1 wi#h + 1 instead ofB, we get
after subtracting the resulting formula from the one above

COROLLARY 1. AsT — oo,
k 2T 2T
N|(T;— | = —log— + O(logT).
4/ s e

Note that the main term in the asymptotic formula does not depeiid on
Multiplying the formula of Corollary 1 withB and subtracting it from the formula of
Theorem 1 gives

COROLLARY 2. We have, a§" — oo,

NTE) > 6——+O )

p nontrivial
[vI<T

One may interpret the last formula in the sense that the mean value of the real parts of the

nontrivial zeros ofR (s; 1) is 1

3. Proof of Theorem 1

The proof relies on

Lemma 4 (Littlewood). Let f(s) be regular in and upon the boundary of the rectangle
R with verticesh, b+ T, ¢+ T, ¢, and not zero o = b. Denote by (o, T') the number

of zerosp = 3 + i of f(s) inside the rectangle wit§ > o including those withy = T
but noty = 0. Then

/ log f(s)ds = —2mi /cl/(a, T)do.
R b
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This is an integrated version of the principle of the argument (the proof can be found in
[5], 89.9 or [2]).

Let A = C + 2. By the condition onB, all nontrivial zeros ofR( s; 44) have real
parts in(—B, A). Denote byN (o, T'; & % o) the number of nontrivial zergsof R (s
with 5 > o and|v| < T. Then Littlewood’s lemma 4, applied to

R( fe)“‘”

and the rectangl€ with verticesA 4+ iT, — B +iT, gives us

k A k
log R ds = —2m: N|o,T;=,a)do+ O(1);
r R B l

here the error term occurs from the removed pole-at1. Therefore,

42

2r Y (B+p)+0(1)
R(A+it;£>‘dt

B>—B
k T
R(—B+zt;4—€>‘dt—/_Tlog ]

Ivl<T
A Lk A Lk
_/_BargR(U_ZT;él_é> da+/_BargR(a+zT;4—€> do

T
:/ log
-T
4
ZIZIJ'.

=1

To defindog R ( s; 44) we choose the principal branch of the logarithm on the real axis, as
o — oo; for other points; the value of the logarithm is obtained by analytic continuation.
By the functional equation (3) we have

k
B
R( + it; 4€>‘

= —logm — (2B+1)10g21€+210g|F(B+ 1—it)|

log

*

k —k*
+log R(1+B—it;4—€> —cos(—wB—l—m’t)R(l—l—B—it; 4—€>‘

Using Stirling’s formula, we obtain fo| > 1
. 1 T 1 .
log T'(B+1—1it)| = §+B 10g|t|—§|t|+§10g27r+0(|t| ).

Further, by (4) we get fojt| > 1

*

Lk , ., —k*
log R(l—l—B—zt, 4—€> —cos(—ﬂB—l—mt)R(l—l—B—zt, 4—€>‘
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*

—k
)\ + 7lt] — log2 + Oexp(~t]).

—1
8 A0

R(l—l—B—i,

Collecting together, we obtain

T
1 1
11:/ < logm — (2B + 1) log €+2((54—3)10g|t|—g|t|+§10g277>

-T

*

+log R(1+B—i, 412 >‘+7r|t|—10g2+0(|t| 1))

2 T
OT(2B + 1)log 2 + (2B + 1)2Tlog -
™ e

T
+ / log
-7

2T T
(2B +1)2Tlog — + / log
e T

*

—k
i )‘dt—l—O(logT)

R(l—l—B—i,

*

—k
i )‘dt—l—O(logT)

R (1 + B — it;
The integral above looks similar . We estimate them as we do now figr Note that

1 k AN 1 X r(n) (n—1k
Zexp( 27rz4—e>R(s 4€>—1+4Z s exp(27rz 17 .

This yields

—IQ = / 10g

The absolute value of the sum appearing in the latter formula is less tByrthe Taylor
expansion of the logarithm we may bound the integral by

/_iRe (2 < > AM (%(n—l)))j) dt

dt — 2T log 4.

1+4Z AM (%(n—n)

n=2

and this is bounded. In a similar way we find

T
/ log
-7

R(1+B—z’, Lj)‘dt —2T'log4 + O(1).
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Thus we get
L+ I, =2T(2B +1)log 277—1(;6 + O(logT).
It remains to estlmate the horizontal integrajsZ,. Suppose that RR (o + iT; 44)

hasN zeros for-B < A. Then divide[—B, A] into at mostV + 1 subintervals in
each of which R& (a + zT, 44) is of constant sign. Then

arg R (0’ +iT; L)‘ < (N + D). (7

To estimateV let

=3 (R (v ) em (srmy) )

Then we havg(c) = ReR (o +iT; £). Let R = A + B and choosé’ so large that
T > 2R.Now, Im(z +4T) > 0 for |z — A| < T. ThusR (z + iT; &), and hencg(z),
is analytic for|z — A| < T'. Letn(r) denote the number of zeros @fz) in |z — A| < r.
Obviously, we have

/02R wdr > n(R) /2R T sz

T R T

With Jensen’s formula (see [5], §3.61),

2R 1 (27 ;
| M8ar = = [ gl (4+2Re) |0~ 10gg(4).
0 r 27 Jo

we deduce

1
2mlog 2

2m
/ log |g (A + 2Re%) | do — 2819(@)].
0

<
n(R) < log2

By (4) it follows thatlog |g(A)| is bounded. To bound the integrand above, note that we
have by Stirling’s formula, the functional equation (3) and (4)

k 1-20
R( 4€> < |t

for o < 0, where the implicit constant depends onlylotJsing the Phragmén-Lindel6f
principle (see [5], 85.65), we get in any vertical strip of bounded width

k c
R( 4€> < |t
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with a certain positive constant Obviously, the same estimate holds §dt). Thus, the
integral above i< logT, andn(R) < logT. Since the interval— B, A) is contained
in the disc|z — A| < R, we haveN < n(R). Therefore, with (7), we get

A
L] < /
_B

Obviously,I5 can be bounded in the same way. Thus Theorem 1 is proved.

k
arg R (0’ + 4T} 4—€> ‘ do < logT.
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Apie naujosdzeta funkcijosnulius

R. Slezeviiere

Straipsnyje nagrisjama nauja dzeta funkcif(s; &) = >-°° | "% exp (2rmin L), kur k ir
¢ tokie teigiami sveikieji skaiai, kadk ir 4¢ yra tarpusavyje pirminiaiy(n) zymi skatiy bady,
kuriais teigiana sveila ska€iun galima iSreiksti dviaj sveikyju skatiu kvadrati suma, iirodoma

Sios funkcijos netrivialiju nuliy skatiaus asimptotia formuk.



