Combination of temporal logic with modal logic KD

Regimantas PLIUŠKEVIČIUS (MII) *e-mail:* regis@ktl.mii.lt

1. Introduction

Combinations of modal (including temporal) logics are used as a formal theory that can be helpful for the specification, development, and even the execution of digital agents [4], [5]. Propositional modal and temporal logics are often insufficient for more complex real world situations. First-order modal and temporal logics might be necessary. It is well-known that first-order linear temporal logic, FTL, is incomplete, in general, but it becomes complete after adding an ω -type rule [1]. The analogous situation one can see in the case of a first-order linear temporal logic extended with a modal logic. In [3] a decision procedure for so-called miniscoped fragment of first-order linear temporal logic (FTL) is presented.

The aim of this paper is to present a decision procedure for miniscoped fragment of FTL extended by multi-modal logic KD [4].

2. Infinitary sequent calculus MDG_{ω}

A language under consideration is obtained from a traditional language of FTL with operators \bigcirc (Next) and \square (Always) by adding deontic modal operators D_k , where $k \in \{1, \ldots, n\}$. It is assumed that all predicate symbols are flexible (i.e., their value change in time) and constants and function symbols are rigid (i.e., with time-independent meanings). A term and formula are defined as usual. We assume a set of agents $Ag = \{1, \ldots, n\}$ and a formula of the shape D_kA is read as "agent k desires k". The modal operators k0 satisfy analogues of the axioms of the multi-modal logic k1 [4], [5].

For simplicity we don't consider intension operators I_k ($k \in \{1, ..., n\}$) which also satisfy analogues of the axioms of the multi-modal logic KD. Thus, we consider a linear fragment of the logic BDI from [4], [5] with temporal operators \bigcirc , \square and deontic operators D_k . In [4] decidability of a propositional linear BDI was proved. Here a decision procedure for miniscoped first-order fragment of considered logic is presented.

Let us remember the notions of positive and negative occurrences.

A formula (or some symbol) occurs *positively* in some other formula B if it appears within the scope of no negation signs or in the scope of an even number of negation

signs, once all occurrences of $A\supset C$ have been replaced by $\neg A\lor C$; in the opposite case, the formula (symbol) occurs negatively in B. For a sequent $S=A_1,\ldots,A_n\to B_1,\ldots,B_m$ positive and negative occurrences are determined just like for the formula $\bigwedge_{i=1}^n A_i\supset\bigvee_{i=1}^m B_i$. For example, in $\forall x\Box P(x)\to\Box\forall xP(x)$ the first (from the left) occurrences of the symbols \Box , $\forall x$ are negative, the second occurrences of the same symbols are positive.

A sequent S is a miniscoped sequent if all negative (positive) occurrences of \forall $(\exists$, correspondingly) in S occur only in formulas of the shape $Q\bar{x}E(\bar{x})$ (where $Q \in \{\forall, \exists\}$, $\bar{x} = x_1, \ldots, x_n, n \geqslant 0$, E is a predicate symbol). This formula is called a *quasi-atomic formula*; if $Q\bar{x} = \varnothing$, then a quasi-atomic formula becomes an atomic one. A miniscoped sequent S is *temporal-free* if S does not contain temporal operators.

For simplicity we consider so-called Horn-type miniscoped sequents (HM-sequent). A miniscoped sequent S is a HM-sequent if S satisfies the following conditions: (a) the sequent S contains only one positive occurrence of an operator σ , where $\sigma \in \{\Box, D_i\}$ (Horn-type condition); (b) if a formula $\Box A$ occurs negatively in S then A does not contain positive occurrences of the operator σ^* , where $\sigma^* \in \{\bigcirc, \Box, D_i\}$ $(regularity \ condition)$. A HM-sequent S is an induction-free HM-sequent, if S does not contain positive occurrences of \Box . Otherwise a HM-sequent S is a non-induction-free one.

Let us introduce an infinitary calculus for HM-sequents.

A calculus MDG_{ω} is defined by the following postulates:

Axioms:

$$\Gamma, E(t_1, \dots, t_n) \to \Delta, E(t_1, \dots, t_n);$$

$$\Gamma, E(t_1, \dots, t_n) \to \Delta, \exists x_1 \dots x_n E(x_1, \dots, x_n);$$

$$\Gamma, \forall x_1 \dots x_n E(x_1, \dots, x_n) \to \Delta, E(t_1, \dots, t_n);$$

$$\Gamma, \forall x_1 \dots x_n E(t_1(x_1), \dots, t_n(x_n)) \to \Delta, \exists y_1 \dots y_n E(p_1(y_1), \dots, p_n(y_n)),$$

where E is a predicate symbol; $\forall i \ (1 \leqslant i \leqslant n)$ terms $t_i(x_i)$ and $p_i(y_i)$ are unifiable. Rules:

- 1) logical rules consist of traditional invertible rules for logical operators, except the rules $(\forall \rightarrow), (\rightarrow \exists);$
 - 2) temporal and modal rules:

$$\frac{\Gamma \to A^0}{\Sigma_1, \bigcirc \Gamma \to \Sigma_2, \bigcirc A^0}(\bigcirc) \qquad \frac{A, \bigcirc \Box A, \ \Gamma \to \Delta}{\Box A, \ \Gamma \to \Delta}(\Box \to)$$

$$\frac{\Gamma \to \Delta, A; \dots; \ \Gamma \to \Delta, \bigcirc^k A, \dots}{\Gamma \to \Delta, \square A} (\to \square_{\omega}), \qquad \text{where} \quad k \in \omega;$$

$$\frac{\Gamma^* \to A^0}{\Sigma_1, D_k \Gamma \to \Sigma_2, D_j A^0} (D),$$

where $A^0 \in \{A, \emptyset\}$; if $A^0 = \emptyset$ then $\Gamma^* = \Gamma$, otherwise, i.e., if $A^0 = A$ then Γ^* is a subset of Γ such that $D_k = D_j$;

A calculus MDG is obtained from the calculus MDG_{ω} by dropping the rule $(\rightarrow \square_{\omega})$. A calculus MKD is obtained from the calculus MDG by dropping the rule $(\square \rightarrow)$.

Theorem 1 (soundness and ω -completeness of MDG_{ω}). Let S be a HM-sequent, then $\forall M \models S \iff MDG_{\omega} \vdash S$.

Proof 2. * Using Schütte method, analogously as in [1].

Lemma 1. The calculus MKD is decidable for the class of temporal-free HM-sequents.

Now we introduce some canonical forms of HM-sequents.

A HM-sequent S is a primary HM-sequent, if $S = \Sigma_1, D_i\Gamma, \bigcirc\Pi$, $\square\Omega \to \Sigma_2, A^0$, where $A^0 = \varnothing$ or A is formula of the following shape D_jB , or $\bigcirc B$, or $\square B$. For every l ($l \in \{1,2\}$) $\Sigma_l = \varnothing$ or consists of quasi-atomic formulas; $D_i\Gamma = \varnothing$ or consists of HM-formulas of the shape O_iA; O_i $\Pi = \varnothing$ or consists of HM-formulas of the shape O_iA, where A may contain O_i; O_i $\Omega = \varnothing$ or consists of O_iM-formulas of the shape O_iA. A O_iM-sequent O_iA0 is a primary O_iA1 is a primary one such that O_i $\Omega = \varnothing$ and O_iA1 is a primary O_iA2.

Now we define rules by which the reduction of an HM-sequent S to a set of primary and reduced primary HM-sequents is carried out.

The following rules are called *reduction* ones (all these rules are applied in the bottom-up manner):

- 1) logical rules of the calculus MDG, except of $(\forall \rightarrow)$, $(\rightarrow \exists)$;
- 2) the temporal rule ($\square \to$) of the calculus MDG and the following temporal rule:

$$\frac{\Gamma \to \Delta, A; \ \Gamma \to \Delta, \bigcirc \Box A}{\Gamma \to \Delta, \Box A} (\to \bigcirc \Box).$$

Lemma 2 (reduction of HM-sequent S to a set of primary and reduced primary HM-sequents). Let S be a HM-sequent. Then using reduction rules one can automatically construct a reduction of S to a set $\{S_1, \ldots, S_n\}$, where S_j $(1 \le j \le n)$ is a primary (reduced primary) HM-sequent; moreover, $MDG_{\omega} \vdash S \Rightarrow MDG_{\omega} \vdash S_j$, $j \in \{1, \ldots, n\}$.

3. Decision procedure for HM-sequents

First, let us introduce the following separation rules (SR_i) . The rules (SR_i) are bottom-up applied to a reduced primary HM-sequent and have the following shape:

$$\frac{S_i}{\Sigma_1, D_i\Gamma, \bigcap \Pi \to \Sigma_2, A^0} (SR_i),$$

where $1\leqslant i\leqslant 3$ and $S_1=\Sigma_1\to \Sigma_2$; if $A^0=\varnothing$ then $S_2=\Gamma\to$; $S_2=\Gamma^*\to B$, if $A^0=D_jB$, where Γ^* is a subset of Γ such that $D_i=D_j$; $S_3=\Pi\to B$, if $A^0=\bigcirc B$ and $S_3=\Pi\to$, if $A^0=\varnothing$.

Lemma 3 (disjunctive invertibility of (SR_i)). (a) Let S be a conclusion of (SR_i) , and S_i , $(i \in \{1, 2, 3\})$ be a premise of (SR_i) . Then if $MDG_{\omega} \vdash S$ then either (1) $\Sigma_1 \to \Sigma_2$ is an axiom of MDG_{ω} , or (2) $MDG_{\omega} \vdash S_2$, or $MDG_{\omega} \vdash S_3$. (b) The choice of cases (1) or (2) is deterministic.

A calculus MDG^+ is obtained from the calculus MDG by replacing the rules (\bigcirc) , (D) by the rules (SR_i) .

Lemma 4. Let S be an induction-free HM-sequent, then $MDG \vdash S \iff MDG^+ \vdash S$.

We say that two formulas A and A^* are parametrically identical (in symbols: $A \approx A^*$) if either $A = A^*$ or A, A^* are congruent, or A, A^* differ only by the corresponding occurrences of eigen-constants of the rules $(\to \forall), (\exists \to)$. We say that HM-sequents S_i and S_j are parametrically identical (in symbols: $S_i \approx S_j$) if S_i, S_j consist of parametrically identical formulas. We say that a sequent $S_i = \Gamma \to \Delta$ subsumes a sequent $S_j = \Pi, \Gamma' \to \Delta', \Theta$ (in symbols $S_i \succeq S_j$) if $\Gamma \to \Delta \approx \Gamma' \to \Delta'$.

Let S be HM-sequent and A be a formula from S. The notion subformulas of a formula A (RSub(A)) is defined as usual except of two points: (1) if A is a quasi-atomic formula then $RSub(A) = \emptyset$; (2) RSub(QxB(x))) = RSub(B(c)), where c is a new variable, Q is $\forall (\exists)$ and occurs positively (negatively) in S. The notion of subformulas of a sequent $S = A_1, \ldots, A_n \to A_{n+1}, \ldots, A_{n+m}$ is defined as $RSub(S) = \bigcup_{i=1}^{n+m} RSub(A_i)$. $R^*Sub(S)$ is a set obtained from RSub(S) by merging parametrically identical formulas. It is obvious that $R^*Sub(S)$ is finite.

Lemma 5. Let S be an induction-free HM-sequent containing at least one negative occurrence of \square . Then bottom-up applying the rules of calculus MDG^+ we can automatically get deduction tree D such that either each leaf of D is an axiom (in this case $MDG^+ \vdash S$), or there exists a branch of D containing two HM-sequents S^* , S^{**} such that $S^* \succeq S^{**}$ (S^* is called saturated HM-sequent). In this case $MDG^+ \nvdash S$. Therefore the calculus MDG^+ is decidable for induction-free HM-sequents.

Automatic way of construction of the derivation D and correctness (i.e., preservation of derivability) follows from invertibility of the rules of the calculus MDG^+ ; termination follows from finiteness of the set $R^*Sub(S)$.

As in [3] the notions of the calculus and deduction-based decision procedure are coincidental.

A calculus HMSat is obtained from the calculus MDG^+ by adding the rule $(\rightarrow \bigcirc \Box)$ and a procedure for searching saturated HM-sequents. This procedure reflects an inductive nature of the miniscoped fragment of FTL containing a positive occurrence of \Box [6].

Lemma 6. Let S be a non-induction-free HM-sequent and D be a deduction tree constructed bottom-up applying the rules of calculus HMSat. If each leaf of D is either an

axiom or a saturated non-induction-free HM-sequent S^* then $HMSat \vdash S$. Otherwise $HMSat \nvdash S$. The deduction tree D is constructed automatically. Therefore the calculus HMSat is decidable.

This Lemma is justified analogously to Lemma 5 Analogously as in [2] we get

Theorem 2. Let S be HM-sequent. Then $MDG_{\omega} \vdash S \iff HMSat \vdash S$.

From Lemmas 1, 5, 6 and Theorem 2 we get

Theorem 3. The class of HM-sequents is a decision class; the procedure HMSat is sound and complete for the class of HM-sequents.

References

- [1] H. Kawai, Sequential calculus for a first-order infinitary temporal logic, *Zeitchr. für Math. Logic and Grundlagen der Math.*, **33**, 423–432 (1987).
- [2] R. Pliuškevičius, The saturated tableaux for linear miniscoped Horn-like temporal logic, *Journal of Automated Reasoning*, **13**, 51–67 (1994).
- [3] R. Pliuškevičius, Deduction-based decision procedure for a clausal miniscoped fragment of FTL, *Lecture Notes in Artificial Intelligence*, **2083**, 107–120 (2001).
- [4] A.S. Rao, Decision procedures for propositional linear-time belief-desire-intension logics, *Lecture Notes in Artificial Intelligence*, **1037**, 33–48 (1996).
- [5] A.S. Rao, M.P. Georgeff, Decision procedures for BDI logics, *Journal of Logic and Computation*, **8**(3), 292–343 (1998).
- [6] P. Wolper, The tableaux method for temporal logic: an overview, Logique et Analyse, 28, 119–136 (1985).

Laiko logikos ir modalumo logikos KD apjungimas

R.Pliuškevičius

Pasiūlyta išprendžiamoji procedūra pirmos eilės tiesinio laiko logikos išplėtimo modalumo logika KD fragmentui. Pasiūlyta išprendžiamoji procedūra yra korektiška ir pilna.