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1. Introduction

Geostatistics (spatial statistics) is a branch of applied statistics focusing on the characte-
rization of the geospatial dependence on one or more attributes whose values vary over
space (in 1-D, 2-D, or 3-D); and the use of that spatial dependence to predict (model)
values at unsampled locations.

Any of a number of methods to produce estimates of a variable at unsampled locations
is based on values at discrete points. Examples include: tesselation (Theissen polygons,
triangular irregular network, Delauney triangulation, etc.), moving average, inverse dis-
tance weighting, spline functions, trend surfaces. The geostatistical equivalent of best
linear unbiased predictor is kriging predictor.

2. Spatial data analysis

Geostatistical spatial data customarily refer to measurements on several attributes at the
points where spatial locations are referred as sy, so, ..., sp, inregion D.

In the univariate case we observe Y (s;) at a site s; arising from an underlying random
spatial process {Z(s): s€ D}, where D is a fixed subset of R with positive measure. That
1s, the spatial index s varies continuously throughout the region D and realization of the
process is a random surface above D.

Let (Z(s1),Z(s2),...,Z(sn))’ to be a vector of the observed values at locations
S1,S2,..., Sn. The objective is to predict the unobserved value Z(sp) at a location s
which is not one of sy, sg,..., s,. These data may involve spatial correlation which
cannot be ignored.

Kriging, a term introduced by Matheron (1963), is a very popular method to solve
the problem of spatial prediction. It was first used in mining data. It assumes a random
field expressed through a variogram or covariance function, and correct estimation of the
variogram (or covariance function) is crucial.

The model assumption (see [1]) is Z(s) = u + E(s) where E(s) is a zero
mean stochastic term with variogram 2+(-). If we assume intrinsic stationarity then
E(Z(s+ h)Z(s)) = 0 and the variogram is defined as

2v(h) = Var[Z(s + h) — Z(z)]. (1.1)
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This can be written as Var(Z(s+h)Z(s)) = E(Z(s+h)Z(s))? and thus the method
of moments estimator for the variogram can be used (also called the classical estimator,

(1D

L Nw
A(h) = N0 z_: (Z(sk +h) — Z(se)]?, (1.2)

where N (h) is the number of data pairs within a given class of distance. When we have
n observations the number of pairs becomes N(h) = ﬂnz—_ll
The spatial variability between two correlated random variables is described by the

cross semivariogram. An estimator of the cross semivariogram 1is

N(h)

Yij (h — Zi(sk))(Z;5(sk + h) — Z;(sk)] (1.3)

where Z;(.) and Z;(.) denote two different variables, i # j i,5 = 1,...,q and N(h) is
the number of pairs of observations separated by the distance h.

Kriging method is known to be the Best Linear Unbiased Prediction, because it mini-
mizes the variance error between the model and the predictor.

Linear predictor of the value Z;(so) of the data at the unsampled site so from the data

Z(s1),...,2Z(sy) at the sampled sites sy, So, ..., Sn is
Zj(s0) = ) wkiZi(sk), §=1,...,4 (1.4)
k=1

where wy; is the weight for the jth variable of observation at location s, and n is the
number of point observations.

wy; are chosen to minimize the mean squared error M SE = E([ZJ (s0) — Z;(s0)]*.
7 (so) is unbiased for Z(so) if and only if S heq Wkj = 1.

Ordinary kriging gives the optimal predictions under the assumption that the mean
value is constant (but unknown) across the whole area under study.

The ordinary kriging variance for Z; is given by

agk = Zwkj'y(sk — So) +m, (1.5)
k=1

where m is a Lagrange multiplier ([1], p. 122).

Cokriging is prediction of a primary variable using additional information from a se-
condary variable. This method is used in data sets containing more than one regionalized
variables which are correlated with one another.

Suppose that ¢ = 2. The prediction of Z, is done, not only on the basis of Z;, but
also on measurements of Z».
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Cokriging involves the prediction of Z;(so) at an unsampled site so from the data
Z(s1),Z(s2),--.,2Z(sn) (where Z(s)T = (Z1(s), Z(s)) from all variables at the samp-

led sites sy, S2, . . ., sp. The linear prediction of cokriging is
Zl(so) = Zlel(sk)-{—ngZz(sk). (1.6)
k=1 k=1

To obtain an unbiased estimate the following constraints are needed > ;_, v¥ = 1
and >"7° , v§ = 0.
Similary as (1.5) the variance of cokriging the prediction can be written as

n

02k = Y _irk1(sk = s0) + Y v3yka(sk — s0) + my. (1.7)
k=1 k=1

Cross-validation is a method of evaluating the aptness of spatial correlation model
using only data from the sample. This method is especially useful for pointing out which
specific areas in a region are difficult to estimate from the observed data.

Cross-validation procedure:

1. For location s; temporaly exclude Z;(s;) from the data set temporarily.

2. Estimate Z;(s;) from the remaining points.

3. Compare Zj (s:) to Z;(s;) (compute square difference).

4. Do steps (1) to (3) forall = 1,. .., n points in the sample.

5. Compute summary statistics.

Summary statistics:

1. LPRESS = 15" (Z;(s:) — Z;(s—:))* where Z;(s_;) indicates the prediction
of Z;(s;) from the rest of the data. This quantity should be small if the model fits well.

2. Mean of standartized PRESS residuals 1 5°7 | Zils0=Zi0=) where 55, is the

’l=1 &R(_,)

mean squared prediction error for predicting Z;(s;) from the rest. This quantity should
be close to zero if the model fits well. We would like the prediction errors to be small.
3. Root mean squared prediction residuals (standardized)

Ly~ (ZT-(s» ~ Zle-i)y?

N3 OR(-1)

This quantity should be close to one if the model fits well. The variance of the cross-
validation errors is an empirical estimate of the prediction variance.

3. Results

The Curonian lagoon (also known as KurSiy marios, Kurshskij zaliv, Kurische Haff) is
a large (length 95 km, width up to 48 km) shallow (mean depth of 3.8 m, the maximum
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5.8 m) coastal water body in the south-eastern part of the Baltic Sea. The outlet of the
lagoon to the Baltic Sea, Klaipéda Strait, is artificially deepened down to 12 m.

Data have been measured in 1990 year by S. Gulbinskas. They consist of bed se-
diments and soundings of the Curonian Lagoon. Sediments where measured in 213 lo-
cations, depth was measured in 263 locations. Their z coordinates values are between
278199 and 333376 and y coordinates values are between 6088178 and 6172784.

Sediments have been divided into 7 groups depending on median diameter (Md) (in
mm): (1) more than 0.5, (2) 0.5-0.25, (3) 0.25-0.125, (4) 0.125-0.063, (5) 0.063-0.01,
(6) 0.01-0.004, (7) less than 0.004.

In order to apply the above statistical methods for data analysis (modelling and fitting
(cross) semivariogram, evaluating kriging and cokriging, comparing spatial statistics) we
have chosen free available software R (package Gstat). R provides a wide variety of
statistical and graphical techniques (linear and nonlinear modelling, statistical tests, time
series analysis, classification, clustering, ...).

Statistical methods for data on bed fractions percentage and soundings have been
described and applied. The methods are general, but in this paper they have been applied
only to measurements of the Curonian lagoon.

To check which one of the kriging and cokriging methods predict the true data best
first we calculated semivariogram (cross variogram), then used cross-validation method
and calculated summary statistics.

In Gstat variogram models are coded as the sum of one or more simple models (and
optionally an anisotropy structure). A simple variogram model is denoted by cMod(a)
with c the vertical (variance) scaling factor, M od the model type, and a the range (hori-
zontal, distance scaling factor) of this simple model.

Semivariogram models of kriging method have been made using percentage of all
fractions. Semivariogram model for (1) fraction is 16.62548 Nug(0) + 31.57597 Sph
(256783.5), where Sph represents model types, nugget effect equals 16.62548, when
2y(h) =0, sill is 31.57597 and range is 256783.5.

Semivariograms models of kriging method for all fractions are:

(1) fraction: 16.62548 Nug(0) + 31.57597 Sph (256783.5);

(2) fraction: 285.8347 Nug(0) + 176.9284 Sph (30712.18);

(3) fraction: 411.6521 Nug(0) + 578.6877 Sph (11884.07);

(4) fraction: 265.04047 Nug(0) + 62.43803 Sph (15553.02);

(5) fraction: 227.0382 Nug(0) + 345.0651 Sph (18237.69);

(6) fraction: 17.07367 Nug(0) + 531.80577 Sph (532720);

(7) fraction: 15.54634 Nug(0) + 52.93388 Sph (20565.16).

The spherical model had the best-fit to all (cross) semi-variograms.

In cokriging method case cross semivariograms models were changed in each “leave
one out point” step.

The best model is the one that has the smallest root-mean-squared prediction error
and the standardized root-mean-squared prediction error nearest to one, see [1].

Summary statistics (root mean squared prediction residuals) for all fractions are:
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Fraction Kriging Cokriging
(1) 0.2537 0.2088
2) 0.0589 0.0601
(3) 0.0400 0.0414
4) 0.0536 0.0590
(5) 0.0624 0.0673
(6) 0.2479 0.2808
@) 0.2487 0.2939

We can see, that the root mean squared prediction residuals of cokriging method is
much closer to one.

So the results of this research show that the cokriging method for prediction the data
of most fractions is better than kriging.
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Apie krigingo ir kokrigingo modeliu taikyma prognozuojant
Kursiu mariy duomenis

I. Kruminiené, K. Dudinskas, R. Garska

Straipsnyje apraSomi neZinomy erdvés duomeny prognozavimo metodai krigingas ir kokrigin-
gas. Taip pat nurodomos salygos, kurias reikia jvykdyti norint atlikti prognoze. Siekiant nustatyti,
kuris 1§ metody yra efektyvesnis, Kur$iy mariy duomenims buvo pritaikytas kryZminés validacijos

metodas. Rezultatai parodé, kad tikslesni prognozés rezultatai gaunami duomenis prognozuojant
kokrigingu.



