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1. Introduction

A large number of environmental phenomena may be regarded as realizations of spatio-
temporal random process [1, 2] Geostatistics offers a variety of methods to model spatial
data: however, applying such space approaches to spatio-temporal random processes, may
lead to the loss of valuable information in the time dimension.

One obvious solution to this problem is to consider the spatio-temporal phenome-
non as a realization of a random process defined in R¢+1 (i.e., d is the space dimension
plus one time dimension). This approach demands the extension of the existing spatial
techniques into the space-time domain. Despite the straightforward appearence of this
extension, there are a number of theoretical and practical problems that should be add-
ressed prior to any successfful application of geostatistical methods to spatio-temporal
data.

Let {Z(s;t): s € D C R% t € [0,00]} denote a spatio-temporal random process.
Optimal prediction (in space and time) of the unobserved parts of the process, based
on the observated part of process is often the ultimate goal, but to achieve this goal,
a model is needed for how various parts of the process co-vary in space and time. In
what follows, we assume that the spatio-temporal process Z(s;t) satisfies the regularity
condition var(Z(s;t)) < oo, forall s € D, t > 0. Then we denote the mean function as

u(s;t) = E(Z(s;t)),
and covariance function as
K(s,r;t,q) = cov(Z(s;t),Z(r;q)); s,vr€ D, t>0,q>0.

Let {Zit} denote observations of Z(s,t) at spatial locations from the set {s;: i =

1,...,m;} and time moments ¢ = 1,...,T. Suppose that we have data consisting of
N = Zle m, observations of Z(s,t). Here m; denote the number of spatial locations
observed at the time t. Set Z = (211, .., Zmy1,-- -} 21Ty - - + » ZmyT) -

Furthemore, the optimal [i.e., minimum MSPE (see, e.g., [1, 3])] linear predictor of
YA (So; to) is

Z*(s0;t0) = p(so; to) + C(s0; t0)'T™H(Z — w), (1)
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where ¥ = cov(Z), C(so;to0)’ = cov(Z(so;to),Z), and p = E(Z). The MSPE of
Z*(s0;t0) is C(so;t0)'Z~1C(s0; to). In the rest of this article, we assume that the cova-
riance function is stationary in space and time, namely

K(S,T;t,Q)ZC(S—T;t—Q), (2)

for a certain functions C. This assumption helped us to estimate the covariance func-
tion from real data. For any (71;¢q1), - .., (Tm; gm), any real ay, . . ., a,,, and any positive
integer m, C must satisfy positive definitness condition

ZzaiajC(n —715:qi —q5) = 0. (3)

i=1 j=1

To ensure (3) one often specifies the covariance function C to belong to a parametric
family whose members are known to be positive definite. That is, one assumes that

cov(Z(s;t), Z(s + hg;t + he)) = C°(hs; he|6), 4)

where C? satisfies (3) for all § € © € RP.

While there are no difficulties in extending the various kriging estimators and the
kriging equations to the space-time setting, there has been a lack of known valid space-
time covariances and variograms.

Ussualy defined two parametric families C° for (4), i.e., separable and nonseparable
covariance function families.

In the paper [4], we have described the separable covariance functions family, where
we have produced some exemples for this case. There we have presented the results in
case for separate product model.

Let C; be a covariance function on R™ and C; be a covariance function on 7', then
the separate product model is

Cst(hs; ht) = Cs(hs)ct(ht)- (5)

Other family is nonseparable function, when we can’t separate the covariance func-
tions for space and for time. In general case, nonseparable stationary covariance functions
that model space-time interactions are in great demand. Using simple stochastic partial
differential equations over space and time, Jones and Zhang [S] have developed a four-
parameter family of spectral densities that implicitly yield such stationary covariance
functions, although not in closed form.

Cressie and Huang [6] have presented a new methodology for developing whole class
of nonseparable spatio-temporal stationary covariance functions in closed form. But this
class of covariance functions cover ones that satisfied (4) and is described in terms of
complicated integrals of spectral density functions.

One of the objectives of this paper is to perform how to avoid the usage of complicated
covariance functions.
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In the case of temporal independence statio-temporal covariance function is of the
form

Cst(hs; ht) - C*(hs)- (6)

Usually it is necessary to carry out the prediction for each season separately. Then

one had constructed covariance functions {C(h,|0), i = 1,...,4}, corresponding four
seasons.

After averaging of spatio-temporal covariance models for all seasons we have seaso-
nal average model: \

4
CO(hq; hel6) = > 7Ci(hs|0) = C(hs). (7)
1=1

2. Main results

After the covariance function estimation, the interpoliation between the measurement
points was carried out. For this purpose, different geostatistical methods were used.

The kriging equations for space-time kriging are the same as for purely spatial prob-
lems, the difference is in the usage of a space-time covariance instead of a purely spatial
covariance. In the case of regression model of mean function

u(s;t) = E(Z(s;t)) = X7,8 (8)

the optimal prediction is called universal kriging (see, e.g., [1]), where X.; — regressors
matrix, and 8 — regression parameters.

Assume that, m; = m,t = 1,...,T. Then covariance matrix of Z has the form
C: ® C,, where C; is T' x T temporal covariance function, and C, is m x m spatial
covariance function.

Lemma. Optimal linear prediction equation for product covariance function, defined in

(5), is
Zuk(so,to) = 2T , B+6T(Z — X,.8, 9)
where
B=(XT(C7'®CVX,,) XL (Cite Y7, (10)
6= (C;'®Cy)(Cro® Coo), (11)

where ® is the Kronecker product and Cy and Cyg are vectors of spatial and temporal
covariances between predicted point with observed points.



518 E. Lesauskiené, K. Ducinskas

Proof. Expressions (10) and (11) were obtained by using (5) in universal kriging equ-
ation.

Then mean squared prediction error for the predictor, given in (9), is of the form
MSPEyk = 6(0) — 26T (Cyo ® Cs0) + bT(C;1 @ C71)b, (12)
where

b" = 2500(Xee(Ct @ C7N X)) T XT(CT @ O

+CheCh)(Crt® o) (I — X, (X2 (CTt @ CT) X, )
xXI,(CileCh

-1

and 6(0) = C,(0)C4(0).

3. Example

In this section we apply the spatio-temporal stationary covariance functions to the prob-
lem of prediction at the unobserved locations. The spatio-temporal data, used in this ar-
ticle, was collected in the Baltic sea, where the number of observations is taken regularly
in three monthly during the period (1994-1998) at 6 stations in the coastal zone. Solinity
is the observed feature. Exponential spatio-temporal covariance model (5) was conside-
red in [4]. For this data, fitted exponential covariance model (6) under the assumption of
temporal independence, gives the expression

C*(h) = 0.0973698 exp { —13.572| h,|} . (13)

Using prediction equation(9) and mean squared prediction error MSPE equation (12)
for the prediction at an unobserved location we have the following results

N

Zyk(so) = 6.73264,

MSPE(Zyk(so)) = 0.10826.

Taking into account seasonality one can choose four spatio-temporal covariance models,
prediction of solinity and MSPE for spring, summer, autumn, and winter are given by

C*(hs) = 0.210409 exp{—13.572|h,|}, (14)
Zuk(so) = 6.8512, MSPE(Zuk(so)) = 0.10453;
C*(hs) = 0.200872 exp {—13.572|h,|} , (15)

Zuk(so) = 6.74233, MSPE(Zyk(so)) = 0.10813;
C*(hs) = 0.016463 exp{—13.572|h,|}, (16)
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Zuk(so) = 6.48502, MSPE(Zyk(se)) = 0.10994;
C*(hs) = 0.035765 exp{—13.572| h,|}, (17)
Zuk(so) = 6.15312, MSPE(Zyk(so)) = 0.10322,

respectively.
After averaging of exponential spatio-temporal covariance model for all seasons we
have seasonal average model

C*(hs) = 0.115877 exp {—13.572| hs|} . (18)

Using this model for real data we get prediction of solinity at an unobserved location
and MSPE:

-

Zuk(so) = 6.727926, MSPE(Zyk(so)) = 0.1288901.

Thus, on the base of (13—18) we can claim that for this real data the covariance model
(13), which yielded by assumption of temporal independence, is optimal.

References

[1] N. Cressie, Statistics for Spatial Data, Wiley, New York (1993).

[2] I. Rodriguez-lIturbe, J. M. Mejia, The design of rainfall networks in time and space, Water Resources Rese-
ach,10,713-729 (1974).

[3] K. Dudinskas, E. Lesauskiené, J. Saltyté, Universal kriging, Lith. Math. J., 40, 277-280 (2000).

{4] K. Ducinskas, E. Lesauskiené, Separable spatio-temporal covariance functions, Lith. Math. J., 42, 497-500
(2002).

[5] R.H. Jones, Y. Zhang, Models for continuous stationary space-time processes, in: Modelling Longitudinal
and Spatially Correlated Data (Lecture Notes in Statistics, 122), Springer, New York (1997).

[6] N. Cressie, H. Huang, Classes of nonseparable, spatio-temporal stationary covariance functions, Journal of
the American Statistical Association, 94(448), Theory and Methods, 1330-1340(1999).

Universalaus krigingo metodas duomenims, kintantiems erdvéje ir
laike

K. Dudéinskas, E. Lesauskiené

Straipsnyje gautos analitinés iSraiSkos UK (universalaus krigingo) ir MSPE (vidutinés kvad-
ratinés prognozés klaidos), kai erdvés-laiko kovariaciné funkcija yra gaunama eliminuojant laiko
itaka bei imant viduting kovariacing funkcija sezony atZvilgiu. Paémus realius duomenis (1994—
1998 metais kas tris ménesius Baltijos jiiros tyrimy centro rinkti duomenys apie druskingumo kieki

SeSiose pakrantés zonos stotyse), buvo ivertinti erdvés ir laiko kovariacijy parametrai ir atlikta op-
timali prognozé laisvai pasirinktame taske.



