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1. Introduction
We consider the autoregressive order p (AR(p)) process
Xk =p1 X1 +paXpo+ -+ ppXp—p + ¢, (D

where (g1) is a sequence of independent identically distributed (iid) random variables
with zero mean. We assume that p, # 0 and the roots of the polynomial tP — p;tP~1 —
.-+ — pp are less than one in absolute value. Hence the sequence (X}) is stationary.
Assume we observe data X_p1,..., Xn. Let p; be an estimate of the coefficients py,
k = 1,...,p, based on observations (X, —p + 1 < k < N). The residuals are then
defined by

Er=Xp — 1 X1 —p2Xp—2— - —PppXp—p, 1<ESN.

The empirical characteristic function (ECF) ¢y based on ¢, is defined by ¢y (t) =
N1 Zgzl exp{itex }, t € R. The ECF ¢y based on residuals €}, is defined in the same
manner.

A rich motivation to study the asymptotic behavior of the ECF’s in certain functional
framework is found in, e.g., [3]. In [7] ECF’s of iid random variables are considered in a
framework of Holder function spaces. The present contribution extends the initial results
of [7] to the setting of residuals which are not iid even for iid noise (¢j). The paper is
organized as follows. In Section 2 we study the convergence of ¢y with respect to the
Holder topology. As a corollary we obtain a limiting distribution for the large class of
statistics, that are used in Section 3 to test conditional symmetry in AR(p) models.

2. Asymptotic results

The Holder space HS[a,b], 0 < a < 1, consists of complex continuous functions z:
[a, b] — C such that lims_,o wa(z, 8) = 0, where

t _
wa(x,8) = sup M
t.sefab), 0<[t—s|<s |t — 5]
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The set 3([a, b] is a separable Banach space when endowed with the norm ||z ||o (0] =
|z(a)| 4+ wa(x, 1). We shall write ||z||q for ||2]|q,0,1]-

Theorem 1. Assume that E|eo|'t? < 00,0 < 3 < 1 and

max VN|p; — pi| = Op(1), as N — . )

1<i<p

Then forall a,b € R and for all a such that0 < a < 3,
VN|en — cnllajan = op(1), as N — .

Proof. Without loss of generality we take [a, b] = [0, 1]. Set Vi, = (p1 —p1) Xp—1+- - -+
(pp — Z)\p)Xk—p’ k=1,...,N.Since ey, = Xy, —p1 Xp—1— - — Z)\pXk—p =+ Vg,
k=1,...,N,wehave ¢y (t) = cn(t) + Rn(t), where

N

Ry(t)=N"1 Zexp{itsk} [exp{itVi} — 1], teER.
k=1

Hence, the proof of the theorem reduces to showing that
P
IVNRy o — 0. (3)
Write for ¢ € [0, 1] Ry (t) = Ry1(t) + it Rn2(t), where
N
Ryi1(t)=N"! Z exp{iter} (exp{itVi} — 1 — itVy)

k=1
and

Rpno(t -1 Z exp{iteg } Vi.

Interpolating the inequalities [¢’® — 1| < |z|and " — 1 — iz| < 27!|x|? which are
valid for each real z, we obtain [e™V* — 1 — itVj| < [t|* 0|V [P < |Vi| 17 for each
0< B <1landt € [0,1]. Applying this inequality with 0 < 5 < 1 we obtain

N
IVNRy1lla < NTV23 7 [V3) 17
k=1

N

_ _ _ 145
= NN (o1 = p1)Xeo1 + -+ (pp — Bp) Ximp]
k=1
N p
<p maXpl\/_( pHITINTIORN N X 0 @)

k=1j=1
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It is well known (see, e.g., [5]), that there is a sequence of i.i.d. random variables
(nk, k € Z) such that X}, = Z;‘;O ajni—;. Moreover, 7, and go have the same dist-
ributions, and there exists two constants @ > 0 and 0 < b < 1 such that |a| < abF,
0 < k < oo. By this it follows for each k£ > 1

148 ° 1+3
E| X" = E‘Z aﬂ?k—j’
=0
o0 o0
< CY Elani—|"*? < CEleo| ™7 fay|'+7
i=0 =0

and we have by (4) that ||\/NRN1||Q L, 0 with any 0 < 8 < 1. Now the proof of (3)
reduces to

IVNR a0 = 0. 5)
By the definition of V}, we have

\/NRNQ = \/N(pl — Z)\l)TNl + -4 \/N(pp — b\p)TNp;

where

N
rno(t) = N7t Z exp{itex } Xp—v, tER.
k=1

Due to condition (2) it sufficies to prove foreachv =1,...,p
HTNUHa = OP(1)~ (6)

For this purpose we shall use an equivalent sequantial norm on 32 [0, 1].
For any function z: [0, 1] — C, the second differences are defined by

AZz(t) :=2(t + h) + z(t — h) — 2x(t), t,t+he]0,1].
Denote by U; := {t; 1,0 < k < 2771} the set of dyadic points of level j, where ¢, ) :=
(2k + 1)277, and define the coefficients \; x by Xo,o(z) = z(0), Xo,1(x) = z(1) and for
J=z1
1 ' :
k() = —§Aﬁx(tj,k), 0< k<27t h=277,

The sequential norm on 340, 1] is defined by

seq .__ aj .
[l - 3;132 onax i)l ©)
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The norm ||z||, is equivalent to the sequential norm (see [8]), i.e., there are positive
constants a, b such that for every x € H2[0, 1], a||z|lo < ||2]|59 < b||z||o- Since

1
Njk(rNe) = —3 (TNv(tj,k +h)+ryo(tje—h)— QTNu(tj,k))

N
1 . .
—§N 1([_21Xl_v(—4)eXp{th7kE[}Sln2(hEl)),

using the equivalent sequential norm (7) and noting that €; does not depend on X;_,, for
v > 1 we have, with 1 < ¢ < 2,

Elrnvld =E(sglo>2qaj max |)‘j7k(7'Nv)|q)
.]/

0<k<2i—t
0o 272 N q
< CN71¢ Z 2427 Z E’Z exp{it; ker} sin?(277¢)) Xy,
§=0 k=0 =1
o
< CN'IE|X[1) 21 B sin(2 7o)
§=0

o0
< CNl_qE|X1 |‘1E|50|2’Y‘1 Z 9—(2vg—qa—1)j
=0

for any v, 0 < v < 1, and (6) follows by an appropriate choice of ¢ € (1, min{l +
B,8/a} andy = (1+ 5)/2q.

It is well-known that condition (2) in Theorem 1 is satisfied, if pj, is the least squares
estimate and Ezsé < oo (see, e.g., [6], Lemma 2.1).

3. Testing for conditional symmetry

As an application of the Theorem 1, tests for conditional symmetry in AR(p) model
may be considered. A rich motivation to testing conditional symmetry may be found
in [1]. Distribution of X}, conditional on X_1 is symmetric with respect to its condi-
tional mean up = E(Xlek_l), if Fk(x + /Lk|Xk_1) =1- Fk(—x + Mk|Xk—l) or
fre(z+ k| Xk—1) = fu(—x+pr|Xk—1), where Fy, and f, are the conditional cumulative
distribution and probability density functions of X}, respectively, with respect to Xj_1.
In the case of AR(p) model (1), conditional symmetry is equivalent to the symmetry of
g0 about the origin or in terms of characteristic functions to ¢(t) = ¢(—t) or Im¢(t) = 0
for all t € R, where ¢(t) = E exp{iteg}. We will use the last observation to construct a
class of statistics. Consider

Tn(q) = /]R [Tm e (t)]%q(t) dt, ®)
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where Im ¢y () = N~1 fozl sin(t€), q(t): R — R is a nonnegative function.

Theorem 2. Assume that € is symmetric about the origin, conditions of Theorem 1 are
satisfied and

/mm 1, [t]%)q(t) dt < oo forall o suchthat 0 < o < (3. )

Then NfN(q) =[x la(®)|?q(t) dt, where a(t) = [, sin(tz) dW (F(z)), W (t)
is a standard Wiener process and F ( ) denotes a cumulative distribution function of €.

Proof. First let us observe, that

i 2%'\/}(13 sin4(2_j_150))1/2 < 00, (10)

=1

when a < (. As shown in [7], under conditions (9) and (10) and symmetry of &,
NTn(q) 2, T(q), where T (q) = [ [Imen(t)[?q(t) dt. It can be shown that for
any K > 1

~ 2
N{x(a) = Tw(a)| < C(VNIen = el xx))
+C\/NHEN - CN||047[—K7K]\/N||CN — CHa,[—K,K] + NCK,

where Cx — 0, as K — oo. Hence, N|1A“N(q) — Tn(q)] = op(1),as N — oco. The
result then follows by Theorem 1 and Theorem 10 in [7].

Theorem 3. Ifeq is asymmetric about the origin, then
lim iO%foN(q) =0

almost surely.

Proof. Proof is similar to that of Theorem 5.1 in [4].

If we take g(t) = ¢,(t) = [t|7177,0 < v < 1, then by simple calculations IA“N(q,,) =
cyT'n ~, where

N
Ty = N2 Y (E+&01 -5 -al"). ()
Jk=1

C»),:‘/RSiHQ(’U,/QH’U,l_l_’Yd’U,. (12)



530 V. Maniusis, A. Rackauskas

Size-power {100, 250, 5000) ‘Size-powor {250,500,10000)

10

8 e e s e v s+ |

T
010 015 [F:] 025 030 00 02 o4 08 03 10

Fig. 1. fNW family. Fig. 2. fN,o.s and 7 tests.

Theorem 4. Ifeq is symmetric about the origin and conditions of Theorem 1 are satisfied,
then for all vy such that 0 < v < 3

N D
NIy, —T,,
where

7= [ [(le+oP = 1o =) AW () aw (pw)). 13
.

Proof. We have T'(q,) = ¢,T,. Integral (12) converges, when 0 < = < 2. The result
then follows by Theorem 2.

A limited simulation study of the IA“N,, tests using small samples (N = 100) was
conducted for the AR(1) model (p; = 0.9). Fig. 1 shows size-power plots (see [2]) for
various y values (v = 0.001,0.1,0.3,0.5, 0.7,0.9) based on 250 simulations of the test
statistic IA“N,, with 5000 Monte Carlo replications for each simulation of e, ~ A/(0, 1)
under Hp and g, ~ N(0, 0.25) under H; . Fig. 2 compares properties of our test (y = 0.5)
with that of the w-test based on sample skewness coefficient (see [1], N = 250, 500
simulations and 10000 Monte Carlo replicates). The size-power curve of the asymptotic
m-test (one can see its poor performance) also is plotted on Fig. 2.
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Liekany empirinés charakteristinés funkcijos konvergavimas

V. Maniusis, A. Rackauskas

Itirtas AR(p) modelio regresijos lickany empirinio charakteristinio proceso konvergavimas
Hiolderio erdvése. Rezultatai pritaikyti autoregresijos salyginiam simetriSkumui tikrinti.



