Convergence of the residuals based empirical characteristic functions

Vytautas MANIUŠIS, Alfredas RAČKAUSKAS (VU) *e-mail:* alfredas.rackauskas@maf.vu.lt

1. Introduction

We consider the autoregressive order p(AR(p)) process

$$X_k = \rho_1 X_{k-1} + \rho_2 X_{k-2} + \dots + \rho_n X_{k-n} + \varepsilon_k, \tag{1}$$

where (ε_k) is a sequence of independent identically distributed (iid) random variables with zero mean. We assume that $\rho_p \neq 0$ and the roots of the polynomial $t^p - \rho_1 t^{p-1} - \cdots - \rho_p$ are less than one in absolute value. Hence the sequence (X_k) is stationary. Assume we observe data X_{-p+1},\ldots,X_N . Let $\widehat{\rho}_k$ be an estimate of the coefficients ρ_k , $k=1,\ldots,p$, based on observations $(X_k, -p+1 \leqslant k \leqslant N)$. The residuals are then defined by

$$\widehat{\varepsilon}_k = X_k - \widehat{\rho}_1 X_{k-1} - \widehat{\rho}_2 X_{k-2} - \dots - \widehat{\rho}_p X_{k-p}, \quad 1 \leqslant k \leqslant N.$$

The empirical characteristic function (ECF) c_N based on ε_k is defined by $c_N(t) = N^{-1} \sum_{k=1}^N \exp\{it\varepsilon_k\},\ t\in\mathbb{R}$. The ECF \widehat{c}_N based on residuals $\widehat{\varepsilon}_k$ is defined in the same manner.

A rich motivation to study the asymptotic behavior of the ECF's in certain functional framework is found in, e.g., [3]. In [7] ECF's of iid random variables are considered in a framework of Hölder function spaces. The present contribution extends the initial results of [7] to the setting of residuals which are not iid even for iid noise (ε_k) . The paper is organized as follows. In Section 2 we study the convergence of \widehat{c}_N with respect to the Hölder topology. As a corollary we obtain a limiting distribution for the large class of statistics, that are used in Section 3 to test conditional symmetry in AR(p) models.

2. Asymptotic results

The Hölder space $\mathcal{H}^o_{\alpha}[a,b],\ 0<\alpha<1$, consists of complex continuous functions x: $[a,b]\to\mathbb{C}$ such that $\lim_{\delta\to 0}\omega_{\alpha}(x,\delta)=0$, where

$$\omega_{\alpha}(x,\delta) = \sup_{t,s \in [a,b], \ 0 < |t-s| < \delta} \frac{|x(t) - x(s)|}{|t-s|^{\alpha}}.$$

The set $\mathcal{H}^o_\alpha[a,b]$ is a separable Banach space when endowed with the norm $||x||_{\alpha,[a,b]} = |x(a)| + \omega_\alpha(x,1)$. We shall write $||x||_\alpha$ for $||x||_{\alpha,[0,1]}$.

Theorem 1. Assume that $E|\varepsilon_0|^{1+\beta} < \infty$, $0 < \beta < 1$ and

$$\max_{1 \le i \le p} \sqrt{N} |\widehat{\rho}_i - \rho_i| = O_P(1), \quad \text{as } N \to \infty.$$
 (2)

Then for all $a, b \in \mathbb{R}$ and for all α such that $0 < \alpha < \beta$,

$$\sqrt{N}\|\widehat{c}_N - c_N\|_{\alpha,[a,b]} = o_P(1), \quad as \ N \to \infty.$$

Proof. Without loss of generality we take [a,b]=[0,1]. Set $V_k=(\rho_1-\widehat{\rho}_1)X_{k-1}+\cdots+(\rho_p-\widehat{\rho}_p)X_{k-p},\ k=1,\ldots,N$. Since $\widehat{\varepsilon}_k=X_k-\widehat{\rho}_1X_{k-1}-\cdots-\widehat{\rho}_pX_{k-p}=\varepsilon_k+V_k,\ k=1,\ldots,N$, we have $\widehat{c}_N(t)=c_N(t)+R_N(t)$, where

$$R_N(t) = N^{-1} \sum_{k=1}^{N} \exp\{it\varepsilon_k\} \left[\exp\{itV_k\} - 1\right], \quad t \in \mathbb{R}.$$

Hence, the proof of the theorem reduces to showing that

$$\|\sqrt{N}R_N\|_{\alpha} \xrightarrow{P} 0. \tag{3}$$

Write for $t \in [0, 1]$ $R_N(t) = R_{N1}(t) + itR_{N2}(t)$, where

$$R_{N1}(t) = N^{-1} \sum_{k=1}^{N} \exp\{it\varepsilon_k\} \left(\exp\{itV_k\} - 1 - itV_k\right)$$

and

$$R_{N2}(t) = N^{-1} \sum_{k=1}^{N} \exp\{it\varepsilon_k\} V_k.$$

Interpolating the inequalities $|e^{ix}-1| \leqslant |x|$ and $|e^{ix}-1-ix| \leqslant 2^{-1}|x|^2$ which are valid for each real x, we obtain $|e^{itV_k}-1-itV_k| \leqslant |t|^{1+\beta}|V_k|^{1+\beta} \leqslant |V_k|^{1+\beta}$ for each $0<\beta\leqslant 1$ and $t\in[0,1]$. Applying this inequality with $0<\beta\leqslant 1$ we obtain

$$\|\sqrt{N}R_{N1}\|_{\alpha} \leqslant N^{-1/2} \sum_{k=1}^{N} |V_{k}|^{1+\beta}$$

$$= N^{-1/2} \sum_{k=1}^{N} \left| (\rho_{1} - \widehat{\rho}_{1}) X_{k-1} + \dots + (\rho_{p} - \widehat{\rho}_{p}) X_{k-p} \right|^{1+\beta}$$

$$\leqslant p \max_{j=1,\dots,p} |\sqrt{N}(\rho_{j} - \widehat{\rho}_{j})|^{1+\beta} N^{-1-\beta/2} \sum_{k=1}^{N} \sum_{j=1}^{p} |X_{k-j}|^{1+\beta}.$$
(4)

It is well known (see, e.g., [5]), that there is a sequence of i.i.d. random variables $(\eta_k, k \in \mathbb{Z})$ such that $X_k = \sum_{j=0}^{\infty} a_j \eta_{k-j}$. Moreover, η_k and ε_0 have the same distributions, and there exists two constants a>0 and 0< b<1 such that $|a_k|\leqslant ab^k$, $0\leqslant k<\infty$. By this it follows for each k>1

$$\begin{split} E|X_{k-1}|^{1+\beta} &= E\Big|\sum_{j=0}^{\infty} a_j \eta_{k-j}\Big|^{1+\beta} \\ &\leqslant C\sum_{j=0}^{\infty} E|a_j \eta_{k-j}|^{1+\beta} \leqslant CE|\varepsilon_0|^{1+\beta}\sum_{j=0}^{\infty} |a_j|^{1+\beta} \end{split}$$

and we have by (4) that $\|\sqrt{N}R_{N1}\|_{\alpha} \stackrel{P}{\longrightarrow} 0$ with any $0 < \beta \leqslant 1$. Now the proof of (3) reduces to

$$\|\sqrt{N}R_{N2}\|_{\alpha} \stackrel{P}{\longrightarrow} 0.$$
 (5)

By the definition of V_k we have

$$\sqrt{N}R_{N2} = \sqrt{N}(\rho_1 - \widehat{\rho}_1)r_{N1} + \dots + \sqrt{N}(\rho_n - \widehat{\rho}_n)r_{Nn},$$

where

$$r_{Nv}(t) = N^{-1} \sum_{k=1}^{N} \exp\{it\varepsilon_k\} X_{k-v}, \quad t \in \mathbb{R}.$$

Due to condition (2) it sufficies to prove for each $v = 1, \dots, p$

$$||r_{Nv}||_{\alpha} = o_P(1). \tag{6}$$

For this purpose we shall use an equivalent sequantial norm on $\mathcal{H}^o_{\alpha}[0,1]$. For any function $x:[0,1]\to\mathbb{C}$, the second differences are defined by

$$\Delta_h^2 x(t) := x(t+h) + x(t-h) - 2x(t), \quad t, t+h \in [0,1].$$

Denote by $U_j:=\{t_{j,k},0\leqslant k<2^{j-1}\}$ the set of dyadic points of level j, where $t_{j,k}:=(2k+1)2^{-j}$, and define the coefficients $\lambda_{j,k}$ by $\lambda_{0,0}(x)=x(0), \lambda_{0,1}(x)=x(1)$ and for $j\geqslant 1$,

$$\lambda_{j,k}(x) = -\frac{1}{2}\Delta_h^2 x(t_{j,k}), \quad 0 \leqslant k < 2^{j-1}, \quad h = 2^{-j}.$$

The sequential norm on $\mathcal{H}^o_{\alpha}[0,1]$ is defined by

$$||x||_{\alpha}^{\text{seq}} := \sup_{j \ge 0} 2^{\alpha j} \max_{0 \le k < 2^{j-1}} |\lambda_{j,k}(x)|. \tag{7}$$

The norm $||x||_{\alpha}$ is equivalent to the sequential norm (see [8]), i.e., there are positive constants a, b such that for every $x \in \mathcal{H}^o_{\alpha}[0, 1], a||x||_{\alpha} \leq ||x||^{\text{seq}}_{\alpha} \leq b||x||_{\alpha}$. Since

$$\lambda_{j,k}(r_{Nv}) = -\frac{1}{2} \Big(r_{Nv}(t_{j,k} + h) + r_{Nv}(t_{j,k} - h) - 2r_{Nv}(t_{j,k}) \Big)$$
$$= -\frac{1}{2} N^{-1} \Big(\sum_{l=1}^{N} X_{l-v}(-4) \exp\{it_{j,k}\varepsilon_l\} \sin^2(h\varepsilon_l) \Big),$$

using the equivalent sequential norm (7) and noting that ε_l does not depend on X_{l-v} for $v \ge 1$ we have, with $1 < q \le 2$,

$$E \| r_{Nv} \|_{\alpha}^{q} = E \left(\sup_{j \geq 0} 2^{q\alpha j} \max_{0 \leq k < 2^{j-1}} |\lambda_{j,k}(r_{Nv})|^{q} \right)$$

$$\leq C N^{-q} \sum_{j=0}^{\infty} 2^{q\alpha j} \sum_{k=0}^{2^{j-2}} E \left| \sum_{l=1}^{N} \exp\{it_{j,k} \varepsilon_{l}\} \sin^{2}(2^{-j} \varepsilon_{l}) X_{l-v} \right|^{q}$$

$$\leq C N^{1-q} E |X_{1}|^{q} \sum_{j=0}^{\infty} 2^{q\alpha j+j} E |\sin(2^{-j} \varepsilon_{0})|^{2q}$$

$$\leq C N^{1-q} E |X_{1}|^{q} E |\varepsilon_{0}|^{2\gamma q} \sum_{j=0}^{\infty} 2^{-(2\gamma q - q\alpha - 1)j}$$

for any γ , $0 < \gamma \le 1$, and (6) follows by an appropriate choice of $q \in (1, \min\{1 + \beta, \beta/\alpha\})$ and $\gamma = (1 + \beta)/2q$.

It is well-known that condition (2) in Theorem 1 is satisfied, if $\hat{\rho}_k$ is the least squares estimate and $E\varepsilon_0^4 < \infty$ (see, e.g., [6], Lemma 2.1).

3. Testing for conditional symmetry

As an application of the Theorem 1, tests for conditional symmetry in AR(p) model may be considered. A rich motivation to testing conditional symmetry may be found in [1]. Distribution of X_k conditional on X_{k-1} is symmetric with respect to its conditional mean $\mu_k = \mathbf{E}\left(X_k|X_{k-1}\right)$, if $F_k(x+\mu_k|X_{k-1})=1-F_k(-x+\mu_k|X_{k-1})$ or $f_k(x+\mu_k|X_{k-1})=f_k(-x+\mu_k|X_{k-1})$, where F_k and f_k are the conditional cumulative distribution and probability density functions of X_k respectively, with respect to X_{k-1} . In the case of AR(p) model (1), conditional symmetry is equivalent to the symmetry of ε_0 about the origin or in terms of characteristic functions to c(t)=c(-t) or $\mathrm{Im}\,c(t)=0$ for all $t\in\mathbb{R}$, where $c(t)=\mathbf{E}\,\exp\{it\varepsilon_0\}$. We will use the last observation to construct a class of statistics. Consider

$$\widehat{T}_N(q) = \int_{\mathbb{R}} |\operatorname{Im} \widehat{c}_N(t)|^2 q(t) \, \mathrm{d}t, \tag{8}$$

where $\operatorname{Im} \widehat{c}_N(t) = N^{-1} \sum_{k=1}^N \sin(t\widehat{c}_k), q(t) : \mathbb{R} \to \mathbb{R}$ is a nonnegative function.

Theorem 2. Assume that ε_0 is symmetric about the origin, conditions of Theorem 1 are satisfied and

$$\int_{\mathbb{D}} \min(1, |t|^{\alpha}) q(t) \, \mathrm{d}t < \infty \quad \text{for all } \alpha \text{ such that } 0 < \alpha < \beta. \tag{9}$$

Then $N\widehat{T}_N(q) \stackrel{\mathcal{D}}{\longrightarrow} T(q) = \int_{\mathbb{R}} |a(t)|^2 q(t) \, dt$, where $a(t) = \int_{\mathbb{R}} \sin(tx) \, dW(F(x))$, W(t) is a standard Wiener process and F(x) denotes a cumulative distribution function of ε_0 .

Proof. First let us observe, that

$$\sum_{j=1}^{\infty} 2^{\alpha j} \sqrt{j} \left(\mathbf{E} \sin^4(2^{-j-1} \varepsilon_0) \right)^{1/2} < \infty, \tag{10}$$

when $\alpha < \beta$. As shown in [7], under conditions (9) and (10) and symmetry of ε_0 , $NT_N(q) \xrightarrow{\mathcal{D}} T(q)$, where $T_N(q) = \int_{\mathbb{R}} |\mathrm{Im}\, c_N(t)|^2 q(t) \,\mathrm{d}t$. It can be shown that for any $K \geqslant 1$

$$N|\widehat{T}_{N}(q) - T_{N}(q)| \leq C \left(\sqrt{N} \|\widehat{c}_{N} - c_{N}\|_{\alpha, [-K, K]}\right)^{2} + C\sqrt{N} \|\widehat{c}_{N} - c_{N}\|_{\alpha, [-K, K]} \sqrt{N} \|c_{N} - c\|_{\alpha, [-K, K]} + NC_{K},$$

where $C_K \to 0$, as $K \to \infty$. Hence, $N|\widehat{T}_N(q) - T_N(q)| = o_P(1)$, as $N \to \infty$. The result then follows by Theorem 1 and Theorem 10 in [7].

Theorem 3. *If* ε_0 *is asymmetric about the origin, then*

$$\liminf_{N \to \infty} N\widehat{T}_N(q) = \infty$$

almost surely.

Proof. Proof is similar to that of Theorem 5.1 in [4].

If we take $q(t)=q_{\gamma}(t)=|t|^{-1-\gamma}, 0<\gamma<1$, then by simple calculations $\widehat{T}_N(q_{\gamma})=c_{\gamma}\widehat{T}_{N,\gamma}$, where

$$\widehat{T}_{N,\gamma} = N^{-2} \sum_{j,k=1}^{N} \left(|\widehat{\varepsilon}_j + \widehat{\varepsilon}_k|^{\gamma} - |\widehat{\varepsilon}_j - \widehat{\varepsilon}_k|^{\gamma} \right), \tag{11}$$

$$c_{\gamma} = \int_{\mathbb{D}} \sin^2(u/2)|u|^{-1-\gamma} \,\mathrm{d}u. \tag{12}$$

Fig. 1. $\widehat{T}_{N,\gamma}$ family.

Fig. 2. $\widehat{T}_{N,0.5}$ and π tests.

Theorem 4. If ε_0 is symmetric about the origin and conditions of Theorem 1 are satisfied, then for all γ such that $0 < \gamma < \beta$

$$N\widehat{T}_{N,\gamma} \stackrel{\mathcal{D}}{\longrightarrow} T_{\gamma},$$

where

$$T_{\gamma} = \iint_{\mathbb{R}^2} \left(|x+y|^{\gamma} - |x-y|^{\gamma} \right) dW(F(x)) dW(F(y)). \tag{13}$$

Proof. We have $T(q_{\gamma})=c_{\gamma}T_{\gamma}$. Integral (12) converges, when $0<\gamma<2$. The result then follows by Theorem 2.

A limited simulation study of the $\widehat{T}_{N,\gamma}$ tests using small samples (N=100) was conducted for the AR(1) model $(\rho_1=0.9)$. Fig. 1 shows size-power plots (see [2]) for various γ values $(\gamma=0.001,0.1,0.3,0.5,0.7,0.9)$ based on 250 simulations of the test statistic $\widehat{T}_{N,\gamma}$ with 5000 Monte Carlo replications for each simulation of $\varepsilon_k \sim \mathcal{N}(0,1)$ under H_0 and $\varepsilon_k \sim \mathcal{N}(0,0.25)$ under H_1 . Fig. 2 compares properties of our test $(\gamma=0.5)$ with that of the π -test based on sample skewness coefficient (see [1], N=250,500 simulations and 10000 Monte Carlo replicates). The size-power curve of the asymptotic π -test (one can see its poor performance) also is plotted on Fig. 2.

References

- [1] J. Bai, S. Ng, A consistent test for conditional symmetry in time series models, *J. of Econometrics*, **103**, 225–258 (2001).
- [2] R. Davidson, J.G. MacKinnon, Graphical methods for investigating the size and power of test statistics, *The Manchester School*, **66**, 1–26 (1998).

- [3] A. Feuerverger, R.A. Mureika, The empirical characteristic function and its applications, *Annals of Statistics*, **5**(1), 88–97 (1977).
- [4] N. Henze, B. Klar, S.G. Meintanis, Invariant tests for symmetry about an unspecified point based on the empirical characteristic function, to appear in: *J. Multivariate Anal.* (2003).
- [5] L. Horváth, Change in autoregressive processes, Stochastic Process. Appl., 44, 221–242 (1993).
- [6] R.J. Kulperger, On the residuals of autoregressive processes and polynomial regression, *Stochastic Process*. *Appl.*, **21**, 107–118 (1985).
- [7] A. Račkauskas, Ch. Suquet, Hölder convergences of multivariate empirical characteristic functions, Pub. IRMA Lille, 54-VI (2001a).
- [8] A. Račkauskas, Ch. Suquet, Hölder versions of Banach spaces valued random fields, *Georgian Math. J.*, **8**(2), 347–362 (2001b).

Liekanų empirinės charakteristinės funkcijos konvergavimas

V. Maniušis, A. Račkauskas

Ištirtas AR(p) modelio regresijos liekanų empirinio charakteristinio proceso konvergavimas Hiolderio erdvėse. Rezultatai pritaikyti autoregresijos sąlyginiam simetriškumui tikrinti.