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1. Model

Spatial-temporal data can be considered as a realization of a stochastic process (random

field) {Z (s;t): s € D, t € [0,00)}, where s and t define spatial and temporal coordi-
nates, respectively.

Suppose that the model of Z(s; t) in population €2 is
Z (s;t) = Bf z (s;t) + & (s; 1),

where z(s;t) = (z1(s;t),...,z4(s;t))T is a ¢ x 1 vector of nonrandom regressors and
B, is the unknown parameter matrix of order ¢ X p, !l = 1, 2. Assume that {g; (s;t): s €
D C R?% t € [0,00)} is a p-variate zero-mean intrinsically stationary spatial-temporal
Gaussian random field with stationary (in space and time) spatial-temporal covariance
function defined by model

cov{e;(s;t),e1(u;v)} =0 (s—u,t—)

foralls,ue D,t,v >0, [ =1, 2. We restrict our attention to the homoscedastic models,
i.e., 0(0,0) = X. Then, in €); the mean function at location s and time moment ¢ is

w (s;t) = B z (s;1)
and the spatial-temporal covariance function is
cov{e; (s;t), e (u;v)} =c(s —u,t—v) X,
where c(s — u, t — v) is the spatial-temporal correlation function, ! = 1, 2. It is assumed
that the function c(s — u, ¢t — v) is positive definite [2].
Assume that, for alls,u € D, t,v > 0,s # u,t # v,

cov{ei (s;t),e2(u;v)} =cr2(s —u,t —v) %, (1)

where ¢j2(-, -) is the interclass spatial correliation function. The case when there is no
interclass spatial correlation was considered by Saltyte and Duginskas [4].
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Consider the problem of classification of the observation Z° = Z(so, to), with sg €
Do C D, tg > 0, into one of two populations specified above. Under the assumption that
the populations are completely specified and for known prior probabilities of populations
71 and 7o (7, + w9 = 1), the BCR dg(-) minimizing the probability of misclassification
(PMC) is

dB (ZO) = arg {Im?)é} Uy Y/ ( 0) , (2)

where 29 is the realisation of Z° and

pi (%) = (2m) E |3 Fexp ( - -;— (° =)= (0 - uf) )
is a probability density function (p.d.f.) of Z° in €, | = 1,2. Here uf = p(so;to) =
BI'z0 with 20 = z(s¢; t0), [ = 1, 2.

Denote by Pg the PMC of BCR, usually called Bayes error rate.

In practical applications the parameters of the p.d.f. are usually not known. Then the
estimators of unknown parameters can be found from training samples 7 and 75 taken
separately from €2; and ()5, respectively. When estimators of unknown parameters are
used, the plug-in version of BCR is obtained.

Suppose that the spatial-temporal random field is observed at IN; spatial-temporal
coordinates in region D, C D, i.e., we observe the training sample TT = (T{,T4),
where T; is the N; x p matrix of N; observations of p-variate Z(s, t) from {0, [ = 1,2,
Then T is the N x p matrix, where N = N; + No.

Assume that D, is beyond the zone of influence of Do. Then Z O is independenton T

Let B;, B, and . be the ML estimators of By, B2 and 2, respectlvely, based on T,
and let fij(s;t) = BT z(s;t),l =1,2. Put ¥ = (u?, u3, ¥) and ¥ = (29, 43, 2).

The plug-in rule d(2%; ¥) is obtained by replacing the parameters in (2) with their
estimators. Then the corresponding sample LDF is defined as

W (258) = (0 - 5 (@8 +9) ) S (5 - ) +

where v = In %

DEFINITION 1. The actual error rate for dg(2°; \/I\l) is defined as

= im/ (1 ~ 6(1,dp(2% ¥))pu(2°; \Il)) d2°,
=1

where 6 (-, -) is the Kronecker delta.
In the considered case the actual error rate for dg(z°; ¥) can be rewritten as

2 ~ N TS _1/- n
5 :Z”?‘I’((‘l)l (' — 3 (A7 +pg)) X771 (47 — i35 +7),
- (
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where @ (-) is the standard normal distribution function.

DEFINITION 2. The expectation of the actual error rate with respect to the distribution of
T, designated as E7{P(¥)}, is called the expected error rate (EER) for the dg(2°; V).

2. Results
Let X be an N x g regressor matrix of T'. Denote by C = ( Coi C ) the N x N spatial-
.\ C21 C2

temporal correlation matrix of the joint training sample T'. Assume that the mathematical
model of T' is

T=XB+E,

where X = X, ® X2, B = (BT, BY)" and E ~ Nyx,(0,C ® X).
Suppose that 2q x 2¢ matrix D = (XTC"'lX)—1 is partitioned as D =
(Dll -D12
D21 D22
[=1,2.

) ,wheré D11, D2, D21 and Dy, are g x g submatrices. Set Dy = (Dyy, Dy3),

Lemma. Forl = 1,2, ML estimators of B; and % based on T are

B, =D XTcoIT 3)
and

5= %(T — XBYTCc—YT - XB), (4)
where

B=(xTc'x)™' XTc-'T. 5)

Proof. Since T ~ Nyxp, (XB,C ® X)), the log-likelihood of T' is
1 1 -1 -1 T
In L=const — 5 (pln|C|+N In|E])— 5tr (C (T - XB)T~*(T — XB) ) .

If B satisfies
tr (c-l(T — XB)2YT - XB)T)

= min (tr(c-1 (T - XB)L~Y(T - xB)T )) , 6)

then B is said to be the generalised least square estimator of B (Christensen, 2001). In
normal case, the generalised least square estimator is ML estimate as well. By minimising
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(6), we obtain the ML estimator for B. After simple algebra we derive (3) from (5).

Solving the equation aggL = 0, we complete the proof of Lemma.

Since E {E} = qu’ further we will use bias adjusted estimator

_ N -
Y = .
N —2q
Put Ay = i — ( ) 2°,01=1,2, AY = ¥ — ¥. Let ¢ (-) be the stan-
dard normal p.d.f. Denote by P( ) = 9P (@) /043, Pl(i) = 82P( ) /030 (uk)T,
O = op ()05, PO, = 0P (T)/05,00m. PO, =

O?P (¥ ( ) /0 8G;; the partial derivatives up to second order of P (\I/) with respect

to the corresponding parameters evaluated at 4y = u9, 49 = u9 and > = 2, where -
denotes the m’th component of vector ,&? and G;; is ¢’ th element of matrix 2,0, k = 1, 2,

i’j’m’q: 17"'7p'

Assumption 1. Assume that %; —v,0<v<ooas N;,Ny —00,l=1,2.

Assumption 2. Assume that ()T Dz® = O (5), k.l=1,2as N — oo.

Theorem. Suppose assumptions 1-2 hold for trammg sample T'. Then the asymptotic
expansion of the expected error rate for the dg(z° \I!) s

Br{P (%)} =Pp+ —;-MSO( - %— - 1) (Z <+ + 2q> +O(N™2),

=1

where, for [,k =1, 2,

o= (3 +C0" ) Drt

= (5~ 28) (3 22)2 (97 D'
2

1 _
c= A—i—(p 1) A,

and

T
A= \/(u‘f — u3)" T—1(p] —p3).

Proof. Since P(7V) is invariant under linear transformations of data we use the convenient
canonical form of

—1o, Y =I, ' (7)
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where 1 is a p-variate vector of zeroes except first element, which is cqual tol,l=1,2.
Expand P(\Il) in Taylor series about the point u9 = A10, py = —5 £10, & = L.

Taking the expectation with respect to the distribution of 7" and dropping the third order
terms we have

Er {P((f:)} Py +Z(p( NTEr {ARD} + Z (P)T Er {765}

t,j=1
1 < T
+5 > o (PREr {000 (8" })
lLk=1
1« p@
+5 .Z Py 5. Er {86i;064m}
t,7,9,m=1
I =
=D Pz Br {8500, } . (8)
l,k=14,j,m=1
Since P(\f) is minimized at (7), then, forl = 1, 2,
P =0, ©)
where 0, is p-dimensional vector of zeroes, and
Py, =0. (10)
Using Lemma we get, that, for [,k =1, 2,
Er{an (ang)" } = ()T Dg'a"s. (11)
Also
~ A~ 1
E(AGijAGkm) = N 2 (OikOjm + Tim0jk) (12)
and
Er {AGi;AR],} =0, (13)

because of properties of Gaussian variables [3]. Note that

m™

B33P (o gut) o

and

r2 =35 - ol 20 + )i
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Using assumptions 1-2 to (11)—(13), we can conclude that all terms in the right side of
(8) are of order O (1—{,-), as N — oo. Obviously the higher order moments of parameter
estimators are of order O (N ‘k) , k > 1. So the proof of theorem is completed.
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Tiesiné diskriminantiné tarp klasiu koreliuotu erdviniu-laikiniuy
duomenu analizeé

J. Saltyté-Benth, K. Ducinskas

Straipsnyje nagrinéjamas daugiamaciy Gauso lauky su faktorizuota kovariacijy funkcija kla-
sifikavimo uzdavinys. Gautas vidutinés klasifikavimo klaidos asimptotinis skleidinys atvejui, kai
klasiy parametrai vertinami pagal mokymo imtis, pasiZyminc¢ias tarpklasine koreliacija.



