A discrete universality theorem for the Matsumoto zeta-function

Roma KAČINSKAITĖ (ŠU)

e-mail: r.kacinskaite@fm.su.lt

Let g(m) be a positive integer, f(j, m), $1 \le j \le g(m)$, be positive integers, and let $a_m^{(j)}$ be a complex number. Define a polynomial

$$A_m(x) = \prod_{j=1}^{g(m)} \left(1 - a_m^{(j)} x^{f(j,m)}\right)$$

of degree $f(1, m) + \ldots + f(g(m), m)$. Let $s = \sigma + it$ be a complex variable, and let p_m denote the mth prime number. The Matsumoto zeta-function $\varphi(s)$ is defined by

$$\varphi(s) = \prod_{m=1}^{\infty} A_m^{-1}(p_m^{-s}). \tag{1}$$

This function was introduced by K. Matsumoto in [4]. Later it was studied by K. Matsumoto, A. Laurinčikas and by the author under the conditions

$$g(m) \leqslant c_1 p_m^{\alpha}, \quad |a_m^{(j)}| \leqslant p_m^{\beta} \tag{2}$$

with some non-negative constants c_1 , α and β . In this case the infinite product (1) converges absolutely for $\sigma > \alpha + \beta + 1$, and defines there a holomorphic function without zeros.

Note that the Matsumoto zeta-function is a generalization of classical zeta-functions, for example, of the Riemann zeta-function, of zeta-functions attached to cusp form.

In [3] the universality theorem for the Matsumoto zeta-function was proved. The aim of this note is to give a discrete version of this theorem. In the sequel, we suppose that the function $\varphi(s)$ is analytic in the strip $D=\{s\in\mathbb{C}\colon \rho_0<\sigma<\alpha+\beta+1\}$ where $\alpha+\beta+\frac{1}{2}<\rho_0<\alpha+\beta+1$. Moreover, we assume that for $\sigma\geqslant\rho_0$

$$\varphi(\sigma + it) = \mathcal{O}\left(|t|^{c_2}\right),\tag{3}$$

and

$$\int_{0}^{T} |\varphi(\rho_0 + it)|^2 dt = BT, \quad T \to \infty.$$
(4)

Denote

$$M(m) = \sum_{\substack{j=1\\f(j,m)=1}}^{g(m)} a_m^{(j)} p_m^{-\alpha-\beta}.$$

Let h > 0, and suppose that $\exp\left\{\frac{2\pi k}{h}\right\}$ is an irrational number for all integers $k \neq 0$.

Theorem. Let the conditions (2)–(4) be satisfied. Moreover, we suppose that $M(m) \ge c_3 > 0$ for all $m \ge 1$. Let K be a compact subset of the strip D with connected complement. Let f(s) be a non-vanishing continuous function on K which is analytic in the interior of K. Then for every $\varepsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N+1} \# \left\{ 0 \leqslant m \leqslant N : \sup_{s \in K} |\varphi(s+imh) - f(s)| < \varepsilon \right\} > 0.$$

For the proof of the theorem a discrete limit theorem in the space of analytic functions for the function $\varphi(s)$ is used. Let $D_1=\{s\in\mathbb{C}\colon\sigma>\rho_0\}$, and let $M(D_1)$ denote the space of meromorphic on D_1 functions equipped with the topology of uniform convergence on compacta. Then in [2] the following statement was proved.

Lemma 1. Let the conditions (2)-(4) be satisfied. Then the probability measure

$$\frac{1}{N+1} \# \left\{ 0 \leqslant m \leqslant N \colon \varphi(s+imh) \in A \right\}, \quad A \in \mathcal{B}\left(M(D_1)\right),$$

converges weakly to the measure P_{φ} as $N \to \infty$. The limit measure P_{φ} is the distribution of the random element

$$\varphi(s,\omega) = \prod_{m=1}^{\infty} \prod_{j=1}^{g(m)} \left(1 - \frac{\omega^{f(j,m)}(p_m)a_m^{(j)}}{p_m^{sf(j,m)}} \right)^{-1}, \quad s \in D_1, \quad \omega \in \Omega,$$

where

$$\Omega = \prod_{m=1}^{\infty} \gamma_{p_m}, \quad \gamma_{p_m} = \left\{ s \in \mathbb{C} \colon \left| s \right| = 1 \right\},$$

and $\omega(p_m)$ is the projection of $\omega \in \Omega$ to the space γ_{p_m} .

The proof is given in [2].

Now let H(D) be the space of analytic on D functions equipped with a topology of uniform convergence on compacta. Denote by $P_{\varphi,D}$ the restriction of P_{φ} to the space $(H(D),\mathcal{B}(H(D)))$.

Lemma 2. Let the conditions (2)–(4) be satisfied. Then the probability measure

$$P_{N,D}(A) = \frac{1}{N+1} \# \{ 0 \leqslant m \leqslant N \colon \varphi(s+imh) \in A \}, \quad A \in \mathcal{B}(H(D)),$$

converges weakly to $P_{\varphi,D}$ as $N \to \infty$.

Proof. Let the function $F: M(D_1) \to H(D)$ be given by the formula $F(f) = f|_{s \in D}$, $f \in M(D_1)$. This function, clearly, is continuous, therefore the lemma is a consequence of Lemma 1 and of the properties of the weak convergence of probability measures, see [1], Theorem 5.1.

Denote

$$S = \{ f \in H(D) : f(s) \neq 0 \text{ or } f(s) \equiv 0 \}.$$

Lemma 3. The support of the measure $P_{\varphi,D}$ is the set S.

The proof is given in [3].

For the proof of the theorem we also need the Mergelyan theorem.

Lemma 4. Let K be a compact subset of \mathbb{C} whose complement is connected. Then any continuous function f(s) on K which is analytic in the interior of K is approximable uniformly on K by polynomials in s.

The proof can be found, for example, in [5].

Proof of Theorem. First we suppose that f(s) has non-vanishing continuation to H(D). Denote by G the set of functions $g \in H(D)$ such that

$$\sup_{s \in K} |g(s) - f(s)| < \varepsilon.$$

By Lemma 3 the function f(s) is contained in the support S of the random element $\varphi(s,\omega)$. Since by Lemma 2 the probability measure $P_{N,D}$ converges weakly to the measure $P_{\varphi,D}$ as $N\to\infty$ and the set G is open, we deduce from the properties of a weak convergence of probability measures and the support that

$$\liminf_{N \to \infty} \frac{1}{N+1} \# \left\{ 0 \leqslant m \leqslant N : \sup_{s \in K} \left| \varphi(s+imh) - f(s) \right| < \varepsilon \right\} \geqslant P_{\varphi,D}(G) > 0.$$

Now let f(s) be as in the statment of the theorem. Then in view of Lemma 4 there exists a sequence $\{p_n(s)\}$ of polynomials such that $p_n(s) \to f(s)$ as $n \to \infty$ uniformly on K. Since $f(s) \neq 0$ on K, we have $p_{n_0}^{(s)} \neq 0$ on K for sufficiently large n_0 , and

$$\sup_{s \in K} |f(s) - p_{n_0}(s)| < \frac{\varepsilon}{4}. \tag{5}$$

The polynomial $p_0(s)$ has only finitely many zeros, therefore there exists a region G_1 whose complement is connected such that $K \subset G_1$ and $p_{n_0}(s) \neq 0$ on G_1 . Thus there exists a continuous version $\log p_{n_0}(s)$ on G_1 such that $\log p_{n_0}(s)$ is analytic in the interior of G_1 . Therefore by Lemma 4 again there exists a sequence $\{q_n(s)\}$ of polynomials such that $q_n(s) \to \log p_{n_0}(s)$ as $n \to \infty$ uniformly on K. Thus, for sufficiently large n_1 ,

$$\sup_{s \in K} \left| p_{n_0}(s) - e^{q_{n_1}(s)} \right| < \frac{\varepsilon}{4}.$$

Hence and from (5) we obtain

$$\sup_{s \in K} \left| f(s) - e^{q_{n_1}(s)} \right| < \frac{\varepsilon}{2}. \tag{6}$$

From the first part of the proof we deduce that

$$\liminf_{N \to \infty} \frac{1}{N+1} \# \left\{ 0 \leqslant m \leqslant N : \sup_{s \in K} \left| \varphi(s+imh) - e^{q_{n_1}(s)} \right| < \frac{\varepsilon}{2} \right\} > 0. \tag{7}$$

Obviously,

$$\sup_{s \in K} \left| \varphi(s+imh) - f(s) \right| \leqslant \sup_{s \in K} \left| \varphi(s+imh) - e^{q_{n_1}(s)} \right| + \sup_{s \in K} \left| f(s) - e^{q_{n_1}(s)} \right|.$$

Therefore by (6)

$$\left\{m: \sup_{s \in K} |\varphi(s+imh) - f(s)| < \varepsilon \right\} \supseteq \left\{m: \sup_{s \in K} \left| \varphi(s+imh) - e^{q_{n_1}(s)} \right| < \frac{\varepsilon}{2} \right\}.$$

This and (7) yield the assertion of the theorem.

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).
- [2] R. Kačinskaitė, A discrete limit theorem for the Matsumoto zeta-function in the space of meromorphic functions, *Liet. Matem. Rink.*, 42(1), 46-67 (2002) (in Russian).
- [3] A. Laurinčikas, On the Matsumoto zeta-function, Acta Arith., 84(1), 1-16 (1998).
- [4] K. Matsumoto, Value-distribution of zeta-functions, Lecture Notes in Math., 1434, 178-187 (1990).
- [5] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Coll. Publ., 20 (1960).

Diskreti universalumo teorema Matsumoto dzeta funkcijai

R. Kačinskaitė

Straipsnyje irodyta diskreti universalumo teorema Matsumoto dzeta funkcijai.