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A discrete universality theorem for the Matsumoto
zeta-function
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Let g(m) be a positive integer, f(7, m), 1 < j < g(m), be positive integers, and let o

be a complex number. Define a polynomial

g(m)

Am(z) =[] (1 _afri;)zf(j,m))

j=1

of degree f(1,m) +. ..+ f(g(m), m). Let s = o + it be a complex variable, and let p,,
denote the mth prime number. The Matsumoto zeta-function ¢(s) is defined by
- -
o(s) = I An' o) M

m=1

This function was introduced by K. Matsumoto in [4]. Later it was studied by K. Mat-
sumoto, A. Laurincikas and by the author under the conditions

g9(m) < e1pl,,  [a$?)] < pE, )

with some non-negative constants c;, @ and 3. In this case the infinite product (1) con-
verges absolutely for o > a + 8 + 1, and defines there a holomorphic function without
zeros.

Note that the Matsumoto zeta-function is a generalization of classical zeta-functions,
for exampie, of the Riemann zeta-function, of zeta-functions attached to cusp form.

In [3] the universality theorem for the Matsumoto zeta-function was proved. The aim
of this note is to give a discrete version of this theorem. In the sequel, we suppose that
the function (s) is analytic in the strip D = {s € C: po < 0 < a+ 3+ 1} where
a+ B+ % < po < a+ B + 1. Moreover, we assume that for ¢ > pg

p(o +it) = O (Jt|?), (3)

and

T
/|<P(po +it)]*dt = BT, T — . 4)
0
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Denote
g(m)
M(m) > a@pnT
j=1
f(G,m)=1

Let h > 0, and suppose that exp { Z£ } is an irrational number for all integers k # 0.

Theorem. Let the conditions (2)~(4) be satisfied. Moreover, we suppose that M (m) >
c3 > 0 forall m > 1. Let K be a compact subset of the strip D with connected com-
plement. Let f(s) be a non-vanishing continuous function on K which is analytic in the
interior of K. Then for every € >0,

liminf
N—oo 1

# {0 <m<gN: sup lo(s + imh) — f(s)] < s} > 0.

For the proof of the theorem a discrete limit theorem in the space of analytic functions
for the function ¢(s) is used. Let Dy = {s € C: ¢ > po}, and let M(D,) denote the
space of meromorphic on D functions equipped with the topology of uniform conver-
gence on compacta. Then in [2] the following statement was proved.

Lemma 1. Let the conditions (2)~(4) be satisfied. Then the probability measure

N+1#{0 < N: p(s+imh) € A}, AeB(M(Dy)),

converges weakly to the measure P, as N — oo. The limit measure P, is the distribution
of the random element

oo g(m) (Jm)( G\ -1
™ (pm)a
wls,w) = HH( Sf(J::)m) , s€D, wel,
m=1 j=1

where

oo
Q= H Ypms Yo = {8€C: |s| =1},

m=1

and w(p,,) is the projection of w € § to the space Yp,,,.
The proof is given in [2].

Now let H(D) be the space of analytic on D functions equipped with a topology of
uniform convergence on compacta. Denote by P, p the restriction of P, to the space

(H(D),B(H(D)))-
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Lemma 2. Let the conditions (2)—(4) be satisfied. Then the probability measure

1

Pn,p(A) = N+l

#{0<m < N: p(s+imh) € A}, A€ B(H(D)),
converges weakly to P, p as N — co.

Proof. Let the function F: M(D,) — H(D) be given by the formula F(f) = flsGD’
f € M(Dy). This function, clearly, is continuous, therefore the lemma is a consequence
of Lemma 1 and of the properties of the weak convergence of probability measures, see
[1], Theorem 5.1.

Denote
S={fe H(D): f(s)#0 or f(s)=0}.
Lemma 3. The support of the measure P, p is the set S.

The proof is given in [3].
For the proof of the theorem we also need the Mergelyan theorem.
Lemma 4. Let K be a compact subset of C whose complement is connected. Then any

continuous function f(s) on K which is analytic in the interior of K is approximable
uniformly on K by polynomials in s.

The proof can be found, for example, in [5].

Proof of Theorem. First we suppose that f(s) has non-vanishing continuation to H (D).
Denote by G the set of functions g € H(D) such that

sup |g(s) - f(s)l <e.
sEK

By Lemma 3 the function f(s) is contained in the support S of the random element
©(s,w). Since by Lemma 2 the probability measure Py,p converges weakly to the mea-
sure P, p as N — oo and the set G is open, we deduce from the properties of a weak
convergence of probability measures and the support that

lim inf L #0<m < N: sup |tp(s+imh) - f(s)l < E} > P, p(G) > 0.
N—oo N + 1 seK

Now let f(s) be as in the statment of the theorem. Then in view of Lemma 4 there
exists a sequence {p,(s)} of polynomials such that p,(s) — f(s) as n — oo uniformly

on K. Since f(s) # 0 on K, we have pn, # 0on K for sufficiently large ng, and

up [£(s) = Py (5)] < 5- ©)
sEK
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The polynomial po(s) has only finitely many zeros, therefore there exists a region Gy
whose complement is connected such that K C G and py,(s) # 0 on G1. Thus there
exists a continuous version log pn, (s) on Gy such that log p,, (s) is analytic in the interior
of G,. Therefore by Lemma 4 again there exists a sequence {gn(s)} of polynomials such
that g,,(s) — log P (s) as n — oo uniformly on K. Thus, for sufficiently large n;,

SUP | P (5) — €91 (9] < =
seK 4
Hence and from (5) we obtain
sup | £(s) — et @] < . ©
seK 2

From the first part of the proof we deduce that

l}\l{lli;fN:_ 1# {0 <m<N: fg}}z |<p(s+imh) —eq"l(’)| < g} > 0. @)

Obviously,

+ sup lf(s) — e ()
SEK

sup (s +imh) — f(s)| < sup |<p(s + imh) — eI (s)
seK seK

Therefore by (6)

{m: sup |¢(s + imh) — f(s)| < s} o) {m: sup lcp(s + imh) — g1 ()
seK seK

<&
2 ("

This and (7) yield the assertion of the theorem.
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Diskreti universalumo teorema Matsumoto dzeta funkcijai
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Straipsnyje irodyta diskreti universalumo teorema Matsumoto dzeta funkcijai.



