A limit theorem for zeta-functions of normalized cusp forms

Antanas LAURINČIKAS (VU)

e-mail: antanas.laurincikas@maf.vu.lt

Let

$$SL(2,\mathbb{Z}) = \left\{ \left(egin{array}{cc} a & b \ c & d \end{array}
ight) \colon a,b,c,d,\in\mathbb{Z}, \ ad-bc=1
ight\}$$

be the full modular group. A holomorphic on $\Im z > 0$ function F(z) is called a cusp form of weight κ for the full modular group $SL(2,\mathbb{Z})$ if

$$F\left(\frac{az+b}{cz+d}\right) = (cz+d)^{\kappa}F(z)$$

for all

$$a\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}).$$

We assume additionally that F(z) is a normalized Hecke's eigenform. Then F(z) has the Fourier series expansion

$$F(z) = \sum_{m=1}^{\infty} c(m)e^{2\pi i mz}, \quad c(1) = 1.$$

E. Hecke introduced the zeta-function $\varphi(s, F)$, for $\sigma > \frac{\kappa+1}{2}$, given by absolutely convergent Dirichlet series with coefficients c(m):

$$\varphi(s,F) = \sum_{m=1}^{\infty} \frac{c(m)}{m^s}.$$

The function $\varphi(s, F)$ is analytically continuable to an entire function. Moreover, for $\sigma > (\kappa + 1)/2$, $\varphi(s, F)$ has the Euler product expansion

$$\varphi(s,F) = \prod_{p} \left(1 - \frac{\alpha(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta(p)}{p^s} \right)^{-1}$$

with

$$c(p) = \alpha(p) + \beta(p).$$

Let

$$\nu_T(\ldots) = \frac{1}{T} \operatorname{meas} \{ \tau \in [0, T] : \ldots \},$$

where meas $\{A\}$ denotes the Lebesgue measure of the set A, and in place of dots we write a condition satisfied by τ . Denote by H(D) the space of analytic on $D=\{s\in\mathbb{Z}\colon\sigma>\kappa/2\}$ functions equipped with the topology of uniform convergence on compacta. Let γ be the unit circle on \mathbb{Z} , and

$$\Omega = \prod_{p} \gamma_p, \gamma_p = \gamma$$
 for all primes p .

Then Ω is a compact topological group, and on $(\Omega, \mathcal{B}(\Omega))$ ($\mathcal{B}(S)$) stands for the class of Borel sets of the space S) the probability Haar measure m_H exists. This gives a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Define on this probability space an H(D)-valued random element $\varphi(s, \omega; F)$ by

$$\varphi(s,\omega;F) = \prod_{p} \left(1 - \frac{\alpha(p)\omega(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta(p)\omega(p)}{p^s} \right)^{-1}, \quad \omega \in \Omega,$$

where $\omega(p)$ is the projection of $\omega \in \Omega$ to the coordinate space γ_p . Let P_{φ} be the distribution of the random element $\varphi(s,\omega;F)$. Then in [1] the following statement was proved.

Theorem A. The probability measure

$$\nu_T(\varphi(s+i\tau,F)\in A), \quad A\in \mathcal{B}(H(D)),$$

converges weakly to P_{φ} as $T \to \infty$.

The aim of this note is to present a limit theorem for the function $\varphi(s,F)$ in the space of continuous functions $C(\mathbb{R})$ equipped with the topology of uniform convergence on compacta. Let ω be an arbitrary complex number and $\sigma > (\kappa+1)/2$. Define a branch of the multi-valued function $\varphi^{\omega}(s,F)$ by

$$\varphi^w(s,F) = \exp\left\{w\log\varphi(s,F)\right\} = \prod_p \left(1 - \frac{\alpha(p)}{p^s}\right)^{-w} \left(1 - \frac{\beta(p)}{p^s}\right)^{-w}.$$

Hence we deduce that, for $\sigma > (\kappa + 1)/2$,

$$\varphi^{w}(s, F) = \prod_{p} \sum_{k=0}^{\infty} \frac{g_{w}(p^{\alpha})}{p^{\alpha s}} = \sum_{m=1}^{\infty} \frac{g_{w}(m)}{m^{s}},$$

where

$$\begin{split} g_w(p^k) &= \sum_{p^l \mid p^k} d_w(p^l) \alpha^l(p) d_w(p^{k-l}) \beta^{k-l}(p), \\ d_w(p^k) &= \frac{w(w+1) \dots (w+k-1)}{k!}, \quad k = 1, 2, \dots, \end{split}$$

and $g_w(m)$ is a multiplicative function.

Let $\theta > \sqrt{2}/2$ be fixed,

$$\sigma_T = \frac{\kappa}{2} + \frac{\theta(\log\log T)^{3/2}}{\log T}, \quad \kappa_T = (2^{-1}\log\log T)^{-1/2}.$$

Similarly as in the case of the Riemann zeta-function [2] it can be proved that

$$\sum_{m\leqslant T} \frac{g_{\kappa_T}(m)\omega(m)}{m^{\sigma_T+it}}\,,\quad \omega(m) = \prod_{p^\alpha\parallel m} \omega^\alpha(p),$$

for almost all $\omega \in \Omega$ converges uniformly in t on compact subsets of $\mathbb R$ to some function $S(t,\omega)$ as $T\to\infty$. Therefore the limit function $S(t,\omega)$ is a $C(\mathbb R)$ -valued random element defined the probability space $(\Omega,\mathcal B(\Omega),m_H)$. Denote by P_S the distribution of the random element $S(t,\omega)$.

Theorem. Suppose that the function $\varphi(s, F)$ has no zeros in the region $\sigma > \kappa/2$. Then the probability measure

$$P_T(A) \stackrel{def}{=} \nu_T (\varphi^{\kappa_T}(\sigma_T + it + i\tau) \in A), \quad A \in \mathcal{B}(C(\mathbb{R})),$$

converges weakly to P_S as $T \to \infty$.

Here we will give a sketch of the proof of the theorem.

First we consider the Dirichlet polynomial

$$S_u(s) = \sum_{m \leqslant u} \frac{g_{\kappa_T}(m)}{m^s} \,.$$

Define on $(C(\mathbb{R}), \mathcal{B}(C(\mathbb{R})))$ the probability measure

$$P_{T,S_T}(A) = \nu_T (S_T(\sigma_T + it + i\tau) \in A).$$

Lemma 1. The probability measure P_{T,S_T} converges weakly to the measure P_S as $T \to \infty$.

Proof. First we prove the existence of a probability measure P on $(C(\mathbb{R}), \mathcal{B}(C(\mathbb{R})))$ such that the measure P_{T,S_T} converges weakly to P as $T \to \infty$. This is a consequence of the relation

$$\lim_{T \to \infty} \sum_{m \le T} \frac{g_{\kappa_T}(m)\omega(m)}{m^{\sigma_T + it}} = S(t, \omega),$$

which is valid for almost all $\omega \in \Omega$ uniformly in t on compact subsets of \mathbb{R} , of properties of the weak convergence and of a limit theorem for the probability measure

$$\nu_T((p_1^{-i\tau}, p_2^{-i\tau}, \ldots) \in A), \quad A \in \mathcal{B}(\Omega),$$

where p_m denotes the mth prime number, see [2].

The sum $S_T(s)$ is too long, and we will change it by a shorter one. Let

$$n_T = T^{\kappa_T/2}, \quad \varepsilon_T = (\log \log T)^{-1}.$$

Lemma 2. The probability measure $P_{T,S_{n_T}}$ converges weakly to P_S as $T \to \infty$.

Proof. There exists a sequence $\{K_j\}$ of compact subsets of $\mathbb R$ such that

$$\mathbb{R} = \bigcup_{j=1}^{\infty} K_j, \quad K_j \subset K_{j+1},$$

and if K is a compact subset of \mathbb{R} , then $K \subseteq K_j$ for some j. Let

$$\varrho_j(f,g) = \sup_{t \in K_j} d(f(t), g(t)), \quad f, g \in C(\mathbb{R}).$$

Then

$$\varrho(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\varrho_j(f,g)}{1 + \varrho_j(f,g)}$$

is a metric in $C(\mathbb{R})$ which induces its topology. Here d is the spheric metric on the Riemann sphere. Let

$$Z_T(it, \tau) = \sum_{n_T < m \leqslant T} \frac{g_{\kappa_T}(m)}{m^{\sigma_T + it + i\tau}}.$$

Then, using the contour integration and the Montgomery–Vaughan theorem, we find for any compact subset K of $\mathbb R$ that

$$\nu_T \left(\sup_{t \in K} \left| Z_T(it, \tau) \right| \geqslant \varepsilon_T \right) = \frac{B \log T}{\varepsilon_T^2} \sum_{n_T < m \leqslant T} \frac{g_{\kappa_T}^2(m)}{m^{\sigma_T 2/\log T}}$$

$$= \frac{B \log T}{\varepsilon_T^2} T^{-\kappa_T} \frac{\theta (\log \log T)^{3/2} - 2}{\log T} \sum_{n_T \le m \le T} \frac{d_{2\kappa_T}^2(m)}{m} = \mathrm{o}(1),$$

as $T \to \infty$. This and the definition of the metric ρ yield

$$\begin{split} & \nu_T \Big(\varrho \big(S_T(\sigma + it + i\tau), S_{n_T}(\sigma_T + it + i\tau) \big) \geqslant \varepsilon \Big) \\ & \leqslant \frac{1}{\varepsilon} \sum_{j=1}^{\infty} 2^{-j} \frac{1}{T} \int\limits_0^T \frac{2 \sup\limits_{s \in K_j} |Z_T(it, \tau)|}{1 + 2 \sup\limits_{t \in K_j} |Z_T(it, \tau)|} \, \mathrm{d}\tau \\ & = \frac{1}{\varepsilon} \sum_{j=1}^{\infty} 2^{-j} \frac{1}{T} \Big(\int\limits_0^T + \int\limits_{0}^T \int\limits_{0} \frac{2 \sup\limits_{s \in K_j} |Z_T(it, \tau)|}{1 + 2 \sup\limits_{t \in K_j} |Z_T(it, \tau)|} \, \mathrm{d}\tau = \mathrm{o}(1), \end{split}$$

as $T \to \infty$. Hence in view of the well-known properties of the weak convergence the lemma follows.

Now let

$$g(s) = \varphi^{\kappa_T}(s, F) - S_{n_T}(s).$$

Our next aim is to obtain the following assertion.

Lemma 3. Let $\varepsilon_T = 1/\log T$, and let K be a compact subset of \mathbb{R} . Then

$$\nu_T \left(\sup_{t \in K} \left| g(\sigma_T + it + i\tau) \right| \geqslant \varepsilon_T \right) = \mathrm{o}(1)$$

as $T \to \infty$.

Proof. We apply the moment method developed in [2]. Let

$$K(\sigma) = \int_{-\infty}^{\infty} |g(\sigma + it)|^2 \omega(t) dt,$$

with

$$\omega(t) = \int_{\log^2 T}^{T/2} \exp\left\{-2(t-2\tau)\right\} d\tau.$$

Then similarly as in [2] we obtain that, for $\kappa/2 \leqslant \sigma \leqslant \sigma_2 \leqslant \kappa/2 + 1/16$ and $T \geqslant T_0$,

$$K(\sigma_{2}) = B(K(\sigma_{1}))^{\frac{4\kappa+3-4\sigma_{2}-4\sigma_{1}}{4\kappa+3-8\sigma_{1}}} \left(T^{1-c_{1}\kappa_{T}}\right)^{\frac{4(\sigma_{2}-\sigma_{1})}{4\kappa+3-8\sigma_{1}}} + B(K(\sigma_{1}))^{\frac{4\kappa+3-8\sigma_{2}}{4\kappa+3-8\sigma_{1}}} \exp\left\{-c_{2}(\sigma_{2}-\sigma_{1})\log^{2}T\right\}.$$
(1)

Further, we define

$$L(\sigma) = \int_{-\infty}^{\infty} \left| S_{n_T}(\sigma + it) \right|^{2/\kappa_T} \omega(t) dt$$

and

$$J(\sigma) = \int_{-\infty}^{\infty} |\varphi(\sigma + it, F)|^2 \omega(t) dt,$$

and prove that, for $T \geqslant T_0$,

$$\begin{split} L\Big(\frac{\kappa}{2} + \frac{1}{\log T}\Big) &= BT(\log T)^{1+\varepsilon}, \quad \varepsilon > 0, \\ J\Big(\frac{\kappa}{2} + \frac{1}{\log T}\Big) &= BT\log^4 T. \end{split}$$

From this and (1) we deduce that, for $\sigma_T - \frac{1}{\log T} \leqslant \tilde{\sigma}_T \leqslant \sigma_T + \frac{1}{\log T}$ and $T \geqslant T_0$,

$$K(\tilde{\sigma}_T) = BT \exp\left\{-c_3(\log\log T)^{3/2}\right\}. \tag{2}$$

Now by Chebyshev's inequality, using the contour integration, we find

$$\nu_T \left(\sup_{t \in K} \left| g(\sigma_T + it + i\tau) \right| \geqslant \varepsilon_T \right) \leqslant \frac{1}{\varepsilon_T^2 T} \int_0^T \sup_{t \in K} \left| g(\sigma_T + it + i\tau) \right|^2 d\tau$$

$$= B \log T \int_0^{2T} \left| g(\sigma_T + it + i\tau) \right|^2 dt = BT \exp \left\{ -c_3 (\log \log T)^{3/2} \right\}.$$

This and (2) prove the lemma.

Proof of the Theorem. Let ε be an arbitrary positive number. Then

$$\nu_{T}\left(\varrho(\varphi^{\kappa_{T}}(\sigma+it+i\tau),S_{n_{T}}(\sigma_{T}+it+i\tau))\geqslant\varepsilon\right)$$

$$\leqslant \frac{1}{\varepsilon}\sum_{j=1}^{\infty}2^{-j}\frac{1}{T}\int_{0}^{T}\frac{2\sup_{t\in K_{j}}|g(\sigma+it+i\tau)|}{1+2\sup_{t\in K_{j}}|g(\sigma+it+i\tau)|}d\tau$$

$$= \frac{1}{\varepsilon} \sum_{j=1}^{\infty} 2^{-j} \frac{1}{T} \left(\int\limits_{0}^{T} \int\limits_{t \in K_{j}}^{T} d\tau + \int\limits_{t \in K_{j}}^{T} \int\limits_{|g(\sigma+it+i\tau)| > \varepsilon_{T}}^{T} \frac{2 \sup\limits_{t \in K_{j}} |g(\sigma+it+i\tau)|}{1 + 2 \sup\limits_{t \in K_{j}} |g(\sigma+it+i\tau)|} \mathrm{d}\tau = \mathrm{o}(1),$$

as $T \to \infty$ by Lemma 3. Hence the theorem is a consequence of Lemma 2.

References

- [1] A. Kačenas, A. Laurinčikas, On Dirichlet series related to certain cusp forms, *Lith. Math. J.*, 38, 64-76 (1998).
- [2] A. Laurinčikas, Limit Theorems fo the Riemann Zeta-Function, Kluwer, Dordrecht/London/Boston (1996).

Ribinė teorema normuotų parabolinių formų dzeta funkcijoms

A. Laurinčikas

Straipsnyje irodyta ribinė teorema silpno matų konvergavimo prasme normuotų parabolinių formų dzeta funkcijoms tolydžių funkcijų erdvėje.