On permutations missing short cycles

Eugenijus MANSTAVIČIUS* (VU)

e-mail: eugenijus.manstavicius@maf.vu.lt

Let \mathbb{S}_n denote the symmetric group of permutations σ acting on $n\geqslant 1$ letters. Each $\sigma\in\mathbb{S}_n$ has a unique representation (up to the order) by the product of independent cycles κ

$$\sigma = \kappa_1 \cdots \kappa_w, \tag{1}$$

where $w=w(\sigma)$ denotes the number of cycles. Let ν_n be the uniform probability measure on \mathbb{S}_n (Haar measure). Set $L_m(\bar{k})=1k_1+\cdots+mk_m$ for arbitrary $0\leqslant m\leqslant n$ and a vector $\bar{k}=(k_1,\ldots,k_n)\in\mathbb{Z}^{+^n}$. If $k_j(\sigma)$ denotes the number of cycles of length j in (1), then the vector $\bar{k}(\sigma):=(k_1(\sigma),\ldots,k_n(\sigma))$, called *structure vector* of the random permutation σ , satisfies the relation $L_n(\bar{k}(\sigma))=n$. It is well known that the distribution of $\bar{k}(\sigma)$ is

$$\nu_n(\bar{k}(\sigma) = \bar{k}) = \mathbf{1} \left\{ L_n(\bar{k}) = n \right\} \prod_{j=1}^n \frac{1}{j^{k_j} k_j!} =: \mathbf{1} \left\{ L_n(\bar{k}) = n \right\} P_n(\bar{k}), \quad \bar{k} \in \mathbb{Z}^{+^n}.$$

To avoid a possible misunderstanding, we stress that here and in the sequel \bar{k} and k_j denote deterministic quantities while $\bar{k}(\sigma)$ and $k_j(\sigma)$ are random.

Dealing with the value distribution problems with respect to ν_n of mappings defined on \mathbb{S}_n via $\bar{k}(\sigma)$, we need asymptotic formulas for the probability of permutations without cycles which lengths belong to a given set. For $J \subset [n] := \{1, \ldots, n\}$, we denote

$$\nu(n,J) = \nu_n\left(k_j(\sigma) = 0 \ \forall j \in J\right) = \sum_{\substack{L_n(\bar{k}) = n \\ k_j = 0, j \in J}} P_n(\bar{k}).$$

So, the problem is to investigate $\nu(n, J)$.

We start with two inequalities. Set $K = \sum_{j \in J} 1/j$.

Theorem 1. We have

$$\exp\{-e^{7K}\} \ll \nu(n, J) \ll e^{-K}.$$

with absolute constants in the symbol \ll , an analog of $O(\cdot)$.

^{*}Supported by a Lithuanian State Stipend of the Highest Rank.

The lower bound of $\nu(n,J)$ has been established in author's paper [5]. With more effort the exponent 7 in the left-hand side can be substituted by 6 but this lower bound cannot be beyond $\exp\{-(1+o(1))Ke^K\}$ as $K\to\infty$.

The upper inequality follows from the following mean-value estimate for a completely multiplicative function

$$f(\sigma) = \prod_{j=1}^{n} f_j^{k_j(\sigma)}, \quad 0^0 := 1,$$

where $f_j \in \mathbb{R}$ for $1 \leqslant j \leqslant n$. Set

$$M_n(f) = \frac{1}{n!} \sum_{\sigma \in \mathbb{S}_n} f(\sigma) = \sum_{\substack{L_n(k) = n \\ k_j \geqslant 1, j \in [n]}} \prod_{j=1}^n \left(\frac{f_j}{j}\right)^{k_j} \frac{1}{k_j!}.$$

Lemma. If $f_i \in [0, 1]$, then

$$M_n(f) \ll \exp\left\{\sum_{j=1}^n \frac{f_j - 1}{j}\right\} \tag{2}$$

with an absolute constant in the symbol \ll .

Proof. We can use the generating function

$$1 + \sum_{n=1}^{\infty} M_n(f)x^n = \exp\bigg\{\sum_{j=1}^{\infty} \frac{f_j x^j}{j}\bigg\}.$$

Differentiating it and comparing the coefficients, we obtain

$$M_n(f) = \frac{1}{n} \sum_{j=0}^{n-1} f_j M_{n-j}(f), \quad M_0(f) := 1.$$

This recurrence falls within the scope of those investigated by A. Hildebrand and G. Tenenbaum [2]. Theorem 2 of their paper implies (2). The lemma is proved.

General mean-value theorems for multiplicative functions on combinatorial structures have been established in [6]. They yield asymptotic formulae for $\nu(n,J)$ under certain regularity conditions for J. If $J \subset [\varepsilon_n n, n]$ for some $\varepsilon_n > 0$, $\varepsilon_n \to 0$ such that $\varepsilon_n n \to \infty$ at a certain speed, instead of the estimates in Theorem 1, using the saddle point method, we can obtain a more exact asymptotic expression. As it has been observed in author's paper [3], such formulas can also be derived from the relevant results on polynomials over a finite field \mathbb{F}_q missing irreducible factors of large degree. Actually, that is possible if these results hold uniformly in the number q of elements of the field. The next theorem

has been proved going along this path. Note, that papers [1], [3], [4], and [8] contain a rather comprehensive historical survey on the problem for polynomials over a finite field.

Let $\rho(x)$ be the Dickman function defined as the continuous solution to the equation $x\rho'(x)+\rho(x-1)=0$ for x>1 and $\rho(x)=1$ for $0\leqslant x\leqslant 1$.

Theorem 2. Let $2 \le m \le n$. For arbitrary constant C > 0, uniformly in $y := n/m \le Cm/\log m$, we have

$$\nu\left(n,(m,n]\right) = \sum_{l,(k)=n} \prod_{j=1}^{m} \frac{1}{j^{k_j} k_j!} = \rho(y) \left(1 + \mathcal{O}\left(\frac{1 + y \log y}{m}\right)\right).$$

Proof. See Corollaries 1 and 2 in [4].

Investigating $\nu(n, [m])$, where $[m] = \{1, ..., m\}$, as in [1], [3], and [4], we could exploit analytic methods. Nevertheless, one of the purposes of this remark is to demonstrate sieve ideas proposed by R.Warlimont [10]. We will establish a result already announced in [7].

The Buchstab's function $\omega(x)$ is defined as the continuous solution to the equation $(x\omega(x))' = \omega(x-1)$ if $x \geqslant 2$ satisfying $\omega(x) = 1/x$ for $1 \leqslant x \leqslant 2$. Let γ be the Euler constant.

Theorem 3. For $n, m \ge 1$ and $y = n/m \ge 1$, we have

$$\begin{split} \nu(n,[m]) &= \sum_{\stackrel{L_n(\bar{k})=n}{k_j=0, j \leqslant m}} P_n(\bar{k}) = \exp\bigg\{-\sum_{j \leqslant m} 1/j\bigg\} \left(e^{\gamma}\omega(y) + \mathcal{O}\left(\frac{1}{m}\right)\right) \\ &= \frac{e^{-\gamma}}{m} \left(1 + \mathcal{O}(y^{-y/2}) + \mathcal{O}\left(\frac{1}{m}\right)\right). \end{split}$$

Proof. The last equality in the theorem follows from the asymptotic expression for the Buchstab's function (see [9], p. 401).

The permutations having all cycles longer than m for $n/2 \le m < n$ are only the cycles of length n. Hence $\nu(n, [m]) = (n-1)!/n! = 1/n$. Thus, since $\omega(n/m) = m/n$, in this case, we obtain the assertion.

Now let m < n/2 and let n be sufficiently large. We start with the identity

$$n\nu(n,[m]) = \sum_{\substack{L_n(\bar{k})=n\\k_j=0,j\leqslant m}} P_n(\bar{k}) \sum_{j=m+1}^n jk_j = \sum_{\substack{jk\leqslant n\\j>m}} jk \sum_{\substack{L_n(\bar{k})=n,k_j=k\\k_i=0,i\leqslant m}} P_n(\bar{k})$$

$$= \sum_{\substack{jk\leqslant n\\j>m}} \frac{jk}{j^k k!} \sum_{\substack{L_n(\bar{k})=n-jk,k_j=0\\k_i=0,i\leqslant m}} P_n(\bar{k}) = \sum_{\substack{jk\leqslant n\\j>m}} \frac{j^{1-k}}{(k-1)!} \nu\left(n-jk,[m]\cup\{j\}\right). \tag{3}$$

Here and in the sequel, we suppose that $\nu(0, A) = 1$ for any set A. To derive a formula for $\nu(n, [m])$ from (3), we do some "bootstraping". Observe that the summands corresponding to $k \ge 3$ can be neglected. Indeed, using Theorem 1, we obtain

$$\begin{split} \sum_{\substack{jk\leqslant n\\j>m,k\geqslant 3}} \frac{j^{1-k}}{(k-1)!} \nu \left(n-jk,[m]\cup\{j\}\right) \ll \sum_{\substack{j(k+1)\leqslant n/2\\j>m,k\geqslant 2}} \frac{1}{j^k k!} \exp\left\{-\sum_{j\leqslant m} \frac{1}{j}\right\} \\ + \sum_{\substack{j(k+1)>n/2\\k\geqslant 2}} \frac{1}{j^k k!} \ll \frac{1}{m} \sum_{j>m} \left(e^{1/j} - 1 - \frac{1}{j}\right) + \frac{1}{n} \ll \frac{1}{m^2} + \frac{1}{n}. \end{split}$$

Similarly, for $m < j \le n/2$, we have

$$\nu(n-j,[m] \cup \{j\}) = \nu(n-j,[m]) - \sum_{1 \le k \le (n-j)/j} \frac{1}{j^k k!} \nu(n-j(k+1),[m] \cup \{j\})$$

$$= \nu(n-j,[m]) - \frac{1}{j} \nu(n-2j,[m] \cup \{j\}) + O\left(\frac{1}{mj^2} + \frac{1}{n^2}\right).$$

Inserting the last two estimates into (3), we obtain

$$n\nu(n, [m]) = \sum_{m < j \le n/2} \nu(n - j, [m] \cup \{j\}) + \sum_{n/2 < j \le n} \nu(n - j, [m])$$

$$+ \sum_{m < j \le n/2} \frac{1}{j} \nu(n - 2j, [m] \cup \{j\}) + O\left(\frac{1}{m^2} + \frac{1}{n}\right)$$

$$= \sum_{m < j \le n} \nu(n - j, [m]) + O\left(\frac{1}{m^2} + \frac{1}{n}\right)$$

$$= 1 + \sum_{m < j \le n-m} \nu(n - j, [m]) + O\left(\frac{1}{m^2} + \frac{1}{n}\right). \tag{4}$$

A similar approximate recurrence equation has been solved by R. Warlimont [10]. For completeness, we just repeat his argument. If $W(k,m) := m\nu(k,[m]) - \omega(k/m)$, then (4) becomes

$$W(n,m) = \frac{1}{n} \sum_{m < k < n = m} W(k,m) + \frac{m}{n} - \omega\left(\frac{n}{m}\right) + \frac{1}{n} \sum_{m < k < n = m} \omega\left(\frac{k}{m}\right) + O\left(\frac{1}{n}\right). \quad (5)$$

Applying

$$x\omega(x) - 1 = \int_{1}^{x-1} \omega(t) dt$$

for $x \ge 2$, we first obtain

$$\frac{1}{n} \sum_{m < k < n - m} \omega\left(\frac{k}{m}\right) = \frac{1}{n} \int_{m}^{n - m} \omega\left(\frac{t}{m}\right) dt + O\left(\frac{1}{n}\right)$$
$$= \frac{m}{n} \int_{m}^{n/m - 1} \omega(t) dt + O\left(\frac{1}{n}\right) = \omega\left(\frac{n}{m}\right) - \frac{m}{n} + O\left(\frac{1}{n}\right).$$

Further, inserting this into (5), we have

$$|W(n,m)| \le \frac{1}{n} \sum_{m \le k \le n-m} |W(k,m)| + \frac{C}{n}$$
 (6)

with some C>0. Our purpose now is to show that $|W(n,m)|\leqslant C/m$. For that, we apply induction with respect to $r\geqslant 1$ taking $n/r\leqslant m< n$. The case $1\leqslant r<2$ has been considered at the very beginning of the proof. Assume the induction assertion for $r\geqslant 2$ and take $n/(r+1)\leqslant m< n$. Now m< k< n-m implies $k/r\leqslant m< k$, thus from (5) and (6), it follows that

$$|W(n,m)| \le \frac{1}{n} \left((n-2m)\frac{C}{m} + C \right) = \frac{1}{n} \left(\frac{Cn}{m} - C \right) \le \frac{C}{m}.$$

This is the desired inequality. The theorem is proved.

References

- [1] T. Garefalakis, D. Panario, Polynomials over finite fields free from large and small degree irreducible factors, Manuscript, 25 p. (2002).
- [2] A. Hildebrand, G. Tenenbaum, On some Tauberian theorems related to the prime number theorem, *Compositio Math.*, **90**(3), 315–349 (1994).
- [3] E. Manstavičius, Semigroup elements free of large prime factors, in: New Trends in Probab. and Statist., F. Schweiger and E. Manstavičius (Eds.), VSP/TEV, Utrecht/Vilnius (1992), pp. 135–153.
- [4] E. Manstavičius, Remarks on the semigroup elements free of large prime factors, *Lith. Math. J.*, 32(4), 400–409 (1992).
- [5] E. Manstavičius, On random permutations without cycles of some lengths, *Period. Math. Hungar.*, **42**(1-2), 37-44 (2001).
- [6] E. Manstavičius, Mappings on decomposable combinatorial structures: analytic approach, *Combinatorics*, *Probab.*, *Computing*, **11**, 61–78 (2002).
- [7] E. Manstavičius, Value distribution of additive functions on the symmetric group, in: Abstracts of the 8th Vilnius Conference on Probab. Theory and Math. Statistics, TEV, Vilnius (2002), pp. 194–195.
- [8] K. Soundararajan, Smooth polynomials: analogies and asymptotics, Manuscript, 16 p. (1995).
- [9] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Tracts in Math., 46, Cambridge University Press (1995).
- [10] R. Warlimont, Arithmetical semigroups II: sieving by large and small prime elements. Sets of multiples, Manuscripta Math., 71, 197-221 (1991).

Kėliniai be trumpų ciklų

E. Manstavičius

Išvesta simetrinės grupės keitinių be trumpų ciklų skaičiaus asimptotinė formulė. Pagrindinis narys išreikštas per tam tikros diferencialinės lygties su vėluojančiu argumentu sprendinį.