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1. Introduction

Speiser [2] discovered a correspondence between the distributions of the complex zeros
of the Riemann zeta-function {(s) and of its derivative (as usual, s = o +it with o, t € R,
i = v/=1). He showed that Riemann’s hypothesis is equivalent to the non-vanishing of
¢’(s) in the left-half of the critical strip. Yildirim generalized this result for the Dirichlet
L-functions L(s, x). Assuming Generalized Riemann hypothesis he proved [3] that, if x

is a character modgq with x(—1) = 1 and g > 216, then L/(s, x) has exactly one real
zero in the left of the critital strip at ql +0 (‘—‘;gg“;sg), and that, if x(—1) = —1 and
q > 23, then L'(s, x) has no zeros in the left of the critical strip. In this paper we extend
these results to some class of Dedekind zeta-functions.

Let K = Q(a) be a number field of degree n > 2. Then, for ¢ > 1, the Dedekind

zeta-function of K is given by
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where the sum is over all integral ideals A # 0, resp. the product is over all prime
ideals P # 0 of the maximal order. The Dedekind zeta-function satisfies the following
functional equation
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where w is a constant with |w| = 1, D is the discriminant of K, r; is the number of real
conjugates and 2r3 is the number of complex conjugates of c; note that n = r, + 2r,.
Thus, {k(s) has an analytic continuation except for a simple pole at s = 1.
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We are interested in the zero distribution of the derivative of Dedekind zeta-functions.
In [1] Hinz proved that the number N, (T') of zeros pm = Bm + i¥m of Cé(m)(s) with
0 < vm < T is asymptotically

nT

N (T) = — logT+ T log O, (log T),

2 M

where M is the smallest norm of a proper integral ideal.

Our aim is to investigate the number and location of the zeros of the derivative
Dedekind zeta-functions of real-quadratic number fields in the left half of the critical
strip; our results can easily be extended to higher degrees.

2. Statement of results

Let K be a real-quadratic number field over Q, i.e., there exists a squarefree positive
integer d such that K = Q(v/d). One can show that also K = Q(v/D), where

D= d, if d=1mod 4,
T 14d, if d=2,3mod 4,

is the discriminant of K. In this case the Dedekind zeta-function has a representation

(k(s) = {(s)L(s,xD),
where x p is a real primitive Dirichlet character modulo D, defined by

0, if D =0mod 4,
xp(2) =4¢ +1, if D=1mod 8§,
-1, if D=>5mod 8§,
and xp(p) = (%) for primes p # 2, where (—g—
the functional equations for the Riemann zeta-function and for the appearing Dirichlet
L-function one can deduce that {k(s) satisfies the functional equation

) is the Legendre symbol. From this and

C(1 = s) = * D 7(xp)4! =7~ cos (s - 6) cos T (s)(k(s), @)

where § = —(1 — xp(—1)) and 7(xp) is the Gauss sum associated to x p; note that this
coincides with the more general identity (1) in case of real-quadratic number fields.
We shall prove

Theorem 1. Assume the truth of the Riemann hypothesis for (g (s) (i.e., (g(s) # 0 for
o> 1) Ifxp(-1 ) =1land D > 46367 then (g (s) has exactly one simple zero p' in the

strip0 < Rep’ < 4, located at oz =5 +0 (%:5’502). Ifxp(=1) = =1 and D > 2003,
then (i (s) has no zeros in the left of the critical strip.
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3. Proof of the theorem

Let us define

€ (s) = s(s — 1)D*F'r -"’?r(s”)r(g) K (s)-

Then £k (s) is an entire function of oder 1, which vanishes exactly at the non-trivial zeros
p = B+iy of (k(s), but does not vanish at s = 0 and s = 1. By Hadamard’s factorization
theorem we have

&x(s) =e**P ] (1 - %) e”,

P

where A, B are certain constants. Logarithmic differentiation gives us
4 1 1
K
2(s) =B+ (— + ) . 3)
-5+ 2 (b

On the other hand, by definition of £k (s) we get

& 11 \/5 1r'(ﬂ>+1_( )+<K(). @

= - + —— +log—+-= -
&K( °) 2 2T {k
By the functional equation (2), we see
1
ReB = - Z Re-.
P P

Thus, taking real parts in (3) and (4) we find

oo - R
IV (s+6 1_ T /s
3Rt (57) - 3R (3):

Assume that the Riemann hypothesis for (g (s) is true, then all complex zeros lie on the
critical line o = 3. Hence,

a—— -1 o
le—pP Isl2 ls—12  %7x

1. IV /s+§6 1. IV /s
—3Re (T) - 5Re7 (3)-
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Now take a T which is not an imaginary part of a zero of (k (s) and form the contour
L by a rectangle with corners +iT’, % =+ T, making small left-semicircular indentations
around the zeros on the critical line and around the origin.

In the case § = 0 we have

cr—- c—1 VD g
Zps—pp“};—2'|s-1|2“l°gT"ReF(§)' ®)

Since
I/ 1
— = ol—),
T (2) =logz+ (|z|> 6)

we see that Re gK(s) < 0 on the horizontal edges of the contour for T large enough. On

the small left-semicircular indentations around the non-trivial zeros p the first term on the
right hand-side of (5) produces arbitrary large negative values with decreasing radius. For

s= 2+ztwegetRe-K( ) <0, if

—log——Re—

Porer (344

+z—) < 0.

From (6) it follows that

Rez( ) > l-‘/(Rez)

’

Hence, we have that Re ié]fé(s) < 0 on the right of £ if

D > n%e~2F (%) = 46367, 76 ... @
On the small left-semicircle around the origin we have for s = ge??, F<ep< 3z

o cos @

s e

1 s cos<,9
, —3ReT (5) + C+O(e)

where C is the Euler-Mascheroni constant. Thus, the sum of the second, third and fifth
term of (5) produces large negative values as € — 0. For s = it we obtain

vD I (it
= —log — — Re — .
C]K 2Z|s—p12 s—1|2 *r eF( )
Hence, the second term of (5) is less than 1 and
/ !

r r
Z(it) > li —(it) = -C,
Re T (it) > limRe T (it)

t—0
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we get Re é%(s) < Oon the left of £, if
D > n2e2(1+0) =231 24. . .,

With regard to (7) we obtain Re %E(s) < 0 for D > 46367 on the whole contour L.

Since (K (s) has a zero at s = 0, by the argument principal there must be exactly one zero
of (i (s) inside the contour.
Differentiation of (2) with respect to s yields

g(l—s)= 41'(XD)D—1/2{ (4%)3 cos %I‘(s){ log 4—1723 cos ?F(s)
— sin —-1"(s) + 2cos —I"’(s)}(K(s) + (4D2 ) | cos? ()% (s)}

Now assume that (g (1 — s) = 0 for [s — 1] < H;I—D’ i.e., {k(s) has a zero close to the
origin, then

_ D s . TS ms_, s ,
= {log 208 I(s)—msin —2—1"(s)+2 cos 71‘ (s)} ¢k (8)+cos 5 L'(s)¢k(s),

and

! L D s IV
?(s) + f(s, xp) = —log ypo) + 7tan - 2?(3).

Here we note that, for |s — 1| < bg#D, we have

I s 1+0(s—1]?) ¢
—=(s) k1, tan——
1"() Jﬁi+0|s 13) (() s—

+O()

By the Riemann hypothesis, one has (see Lemma 2 of [3])

r 1
7 (5:xp) <loglog D for |s~1|< loeD’

as D — oo. Therefore, we obtain

_ 1 loglogD)
s=1 10gD+O(log2D '

This shows that (i (s) = 0 for |s| < ﬁ is satisfied with

1 log log D)
= (0] .
log D + ( log? D
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In the case 6 = 1 we have

s~ pl? SI"’ s —1[2

1. IV (s+1 1 IV /s
A () -k ()
2R T ( 2 ) 2 °T \2
On the horizontal sides of the contour and on the left-semicircular indentations around
the non-trivial zeros of (g (s) and around the origin we can argue in a similar manner as

Zla—— oc—1 log——@

before. For o = 3 the mequahtyc (s) < 0 holds if
vD 1, I"(3 ¢\ 1 T'(1 't
—log Y= —ZRe— (S 4iz)—Re=(>+i- ] <o.
Iog7r 2Rer<4+z2> 2el.,(4+12)<0
In view of (6) it follows that %ﬁ(s) <0if

D > n%~ (FO+FR)) = 2003, 73... (8)
On the left side of the contour Re %ﬁé(s) < 0if
1 vD 1 I"(1 t\ 1, I'(1 't
1 Yo 1l oty 1t .
|s—1[2 log - 2Rer(2+12> 5 eF<2+z2)<0
For |t| > Rex;f (1+it) < 0, and for |t| > 3, Re (1+i‘) > Re%'(%).

Remembermg (6), we have Re —K(s) < 0 on the left of the contour, if

D> e F(1)+C-1 Z46,06. ...
So, taking into account (8), we guarantee Re (s) < 0 throughout the contour taking

D > 2003. On and inside of the contour E%(s) is analytic. Thus (i (s) has no zeros in
0<o< %

References

[11J. Hinz, Uber Nullstellen der m-ten Ableitung der Dedekindschen Zetafunktion, Journal of Number Theory,
9, 535-560(1977).

[2] A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Annalen, 110, 514-521 (1934).

[3]1 C.Y. Yildirim, Zeros of derivatives of Dirichlet L-functions, Tr. J. of Mathematics, 20, 521-534 (1996).

Apie Dedekindo dzeta funkcijos iSvestinés nulius
R. SleZevitiene

Straipsnyje nagrinéjamas Dedekindo dzeta funkcijos i§vestinés nuliy pasiskirstymas juostoje
0< Res< % realiyjy kvadratiniy skai€iy kiiny atveju.



