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Introduction

Let (Q, F,F,P),F = {F;,t > 0}, be a stochastic basis satisfying the usual conditions.
Definition 1. (see [7]). Forp € [1,2),an F = {F;,t > 0} adapted cadlag stochastic
process Z is called a p-semimartingale if there exist stochastic processes M and A such
that

Z—-Z0)=M+A  almost surely,

where M(0) = A(0) = 0, M is an F local martingale and A is an F-adapted process
with locally bounded p-variation, i.e., for any fixed T > 0, the process A = {A;,0 <
t < T} has bounded p-variation.

Let Y, Z be two p-semimartingales with continuous trajectories and let Z =

M + A, where its summands are continuous processes. Then the Stratonovich integral
(S) [ Y(s)dZ(s) is defined by the formula

¢ t
9) / Y(s)dZ(s) = / Y(s)dz(s) + 5[V 2)5), 130
0 0

The first integral we understand as a sum of two integrals

¢ t
D) [vyaM,  ana (8S) [ f(¥)da,
0 0

where the symbol SI denotes the usual stochastic integral and the symbol RS denotes
the Riemann—Stieltjes integral.
Consider the equation

t
Xt=§+(S)/f(X,)dZ,, £>0,
0
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or equivalent equation

t t
Xo=¢+ [f0)dz 45 [ £5 0 dML, e300 (1)
0

0

For short, we shall write f f'(X,) instead of f(X)f'(Xs).
The purpose of this paper is to find conditions when the weak solution of the equation

(1) exists.

Definition 2. We say that the equation (1) has a weak solutton if there exists a stochastlc
basis (1, F, T, P)andanF adapted processes X 27 M ] such that L(€, Z,[M ]) =
L(€,Z,[M))and (1) holds for X ¢7Z [M] inplaceof X, &, Z, [M).

For 0 < a < 1, C*(R) is the space of bounded Holder functions g with the norm

lo(z) — 9(y)I

llglla := 19loo + |gla = sup|g(z)| + sup < o0.
z z#y |

z —y|*
The main result of this paper is the following theorem.
Theorem 3. Let f € C'(R) and Esup, ¢ | M| < 0o for every T > 0. Then there exists
a weak solution of equation (1).
1. Basic notions and auxiliary results

All facts mentioned below on the p-variation are taken from [1]
The p-variation, 0 < p < o0, of a real-valued function f on'[a, b] is defined as

vp(fila, b)) =sup > _ |f(ax) = flze-1)]"s
¥ k=1

where the supremum is taken over all subdivisions » = {x;: i = .,n} of [a, b] such
thata = 70 < 71 < ... < T = b. If vp(f;[a,b]) < o0, flssaldtohavebounded
p-variation on [a, b]. Let

Wy(la, b)) := {f: [a,b] = R: vp(f;[a,b]) < oo}

Define V,(f) = Vp(f;la,b]) = va/P(f), which is a seminorm on W,([a, b]) provided
> 1 and V,,(f) is 0 if and only if f is a constant.
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Let f € Wy([a,b]) and h € W,([a,b]) with1 < p < 00,¢ >0,1/p+1/g > 1.
If f and h have no common discontinuities then the RS integral f: f dh exists and the
Love-Young inequality

b
\ [ b= SQ)[1O) - h@)] | < Cralali . Va0 ), @

holds for any y € [a, b], where Cpq = ((p~' +¢71), {(s) = 2,5, 7 °. If, moreover,
the function A is continuous, i.e., h € CW([a, b]), then the indefinite integral [, Y fdh,
y € [a, b], is a continuous function.

Let 7 and o be a stopping times such that ¢ < 7 < T. Define v, (Yo, 7]) 1=
v,(YT =Y ?;[0,T]), where Y™ = {Yinr, t > 0}.

Any local martingale is locally of bounded g-variation for each ¢ > 2 (see [6] and
[8]). Moreover, for ¢ > 2and 1 < r < oo there is a finite constants K, such that for
every r-integrable martingale M = {M(t),0<t< T}, T >0,

E{V,(M;[0.T))" < Ko, B{ sup [M()]}

Moreover, if M is a continuous martingale then by the Burkholder—Davis—Gundy inequ-
ality we get

E{V,(M;[0,T)}" < Ko &EM)Y?,

where £, is the constant from the Burkholder-Davis—Gundy inequality.

2. Proofs

Let 5! = {ti: k > 0} bea sequence of partitionsof [0,00),i.., 0 =t§ < t] <th <---,
limy oo ti, = 00, such that for every T > 0 we have maX;¢i(T) [ti,y —til = Oas
i — +oo, where 7*(T') = max{k: t; < T}. For every z € D(R) and »* the sequence
{z*} denotes the following discretizations of z:

o =a(ty)  fort€ [t thp), keNU{0}, ieN.

Define the approximations

t t
xp =+ [100)az 43 [17X)AZ7), 30 meN,
0 0
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and

t

-~

X?=£+/f()?§‘;" iz, + & /ff (R2")d(M),, 130, neN,

0

Lemmad. Let f € Cl(R) and let ¢ > 2 be such that = + > 1, where1 < p < 2. Then

the sequence {Vy(X™;[0,T))} is tight in R for every T > 0 and the sequence {X™} is
C-tight.

Proof. Denote
yn = inf{t > 0: (M), > N,V,(4;[0,t]) > N},

and
t
)?{"N=§,+/f(x"”" )4z + /ff (XM ") d(M)Y, 20, neN,
0

where YN (t) = Y™ (t AyN)-
Similarly as in [4] Lemma 1 one can get
BV, (X™Y:0,T]) < = {KqalflacBy/ (DK +Cpral flow BV, (40, T))
Hfloo| FlooBAMN }+E{Cp ool flaVo(AN: [0, TN}/ O
< 1‘}; {Kq141|flooVN + Cpg/al flooN
Hfloolf looN + {Cpafal fla N}/,
Thus

P(V,(X";[0,T]) > K) <P(yn <T) + K'EV,(X™"; [0, T))
P((M)7 > N,V,(4[0,T]) > N)+K 'EV, (X™";[0,T)),
and the sequence V,(X";[0,T]) is tightin R.

Now we prove the tightness of {X ™}. We use the well known Aldous criterion. Let
7™, n > 1, be stoping times such that 7 < T'. Then by inequality (2)

T+t

/ F(Re)

¥n Yn
sup | X7y, — X7 | < sup
<6 t<6

+Cpa{1£'1ooVa (X7 [0, T1) + |floo} Vo (4 [, 7" + 6])
+| floo| [ oo ({M)7n 45 — (M)zn).
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By the Lenglart-Rebolledo inequality for every €, n we have
T4+t

P(sup /f()?"L"")dMs >e)
t<o | J,

<oref(( [ mmaan) e ( [ 8 a0n.5n)

< 8‘2E{|f|§°(< >fn+a—<M>Tn)) AP (111 (M) g5 — (M) 27)-

Thus we get the tightness of {X}.

Lemma 5. Let f € C}(R) and let q > 2 be such that 1 2 +1 5 > 1,wherel < p <2.Then
the sequence {Vy(X™;(0,T))} is tight in R for every T > 0 and the sequence {X™} is
tight in D([0, 00)).

Proof. The proof of the tightness of the sequence {V4(X™;[0,T1)} is similar as in pre-
vious lemma.
Since X™(t7) = X (t?) for all 7 > 0 then for every T > 0 we get

sup | X7 — )?t"|
t<T
< |floosup|2() — 27 (1)
t<T
™ (T)
H ool f'loo D [M(E]) = M(£1,)] - |A(ET) — A(tE-y))
i=1
r(T)

+ floolf'loo Y lA(t?)—A(t?_1)|2+|floo|f'|oofggl(M)(t)—(MV" ®)]
ci=1 S

" (t)
SR ) () - M) = (M E) - ) )] |
=1

+ sup

Therefore sup, <7 | Xi" — )?ﬂ LA 0, as n — oo. By Lemma ?? we have that the sequence
{X™} is tight. Thus by Lemma 3.31 in Section 6 in [2] we obtain that the sequence { X }
is tight.

Proof of Theorem 1. Define M™ = M »" and A" = A*". The process (M™,F")
is a martingale, where F* = (F,n(y)), p"(t) = max{ty: t} < t}. The process A™ has
locally bounded p-variation since V,(A™; [0,T]) < Vp(4;[0,T1). By this inequality it
follows that the sequence {v,(A™; [0,T])} is tight in R. Note that M™ — M as. and
A™ - Aas.in C([O, T]). Moreover,

sup |[M™] t—( ),|LO, n — 00,
t<T
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where

™ (8)

(M™M= (M(tR) - M(tE_y))

k=1

2

By Lemma 5, by Corollary 3.33 in Section 6 in [2], and facts obtained above it follows
that the sequence {(X™, M™, A", [M™],€)} is C-tight. Thus from every subsequence
{n'} C {n} we can choose a further subsequence {n'"} such that :

(Xn//’ A/In’”’ An”’ [Mnll]’ 6) L (X’ M’ Z, [M], E)’

and L(€, M, [M], A) = L(§, M, [M], A). Since
sup |[Z"" Je — [M“"M », 0,
t<T
as n’" — oo, and functions f and ff’ are continuous, then by the continuous mapping
theorem
(X, F(X), £ (X), M AT (2 ),6)
Lo (X, £(X), ££/(X), M, A, [M],€).

By Lemma 5, we get the tightness of the sequence {vg(F(X™);0,T])}, ¢ > 2,T >0,
in R. Note that

sup Esup |AM]| < 2Esup | M (t)].
¢<T t<T

n

Thus conditions of Lemma 3 in [5] are satisfied and
(. [rexatyas”, [roesaar, [ 15 ea)aiz 1,,5)
0 0 0 :
o, ()?,/f(is)dﬁs,/f()?s)dzs,/ff'()?s)d[m,,g).
0 0 0

Therefore

t

t
" ”" n'’/ 1 ” '
Xy g~ [soeyaze -5 [ ez,
0

sup
t<T
0
t 1 t
D T : F\q7 1Y Y 4
—-—bfgg Xt_g_b/f( s)dZs"§ O/ff (Xs)d[M]3|
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As a consequence

%o=é+ [(R)aZo+ [1£(R)aM.,  t<T
0 0
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Apie silpnus Stratanoviciaus integralinés lygties sprendinius,
‘valdomus tolydZiu p-semimartingalu

K. Kubilius

Nagrinéjamas silpno Stratanovidiaus integralinés lygties sprendinio, valdomo tolydaus p-
semimartingalo, egzistavimas.



