On weak solutions of Stratonovich integral equation driven by a continuous p-semimartingales

Kestutis KUBILIUS (MII, VGTU)

e-mail: kubilius@ktl.mii.lt

Introduction

Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbf{P})$, $\mathbb{F} = \{\mathcal{F}_t, t \ge 0\}$, be a stochastic basis satisfying the usual conditions.

Definition 1. (see [7]). For $p \in [1, 2)$, an $\mathbb{F} = \{\mathcal{F}_t, t \geq 0\}$ adapted cadlag stochastic process Z is called a p-semimartingale if there exist stochastic processes M and A such that

$$Z - Z(0) = M + A$$
 almost surely,

where M(0) = A(0) = 0, M is an \mathbb{F} local martingale and A is an \mathbb{F} -adapted process with locally bounded p-variation, i.e., for any fixed T > 0, the process $A = \{A_t, 0 \leq t \leq T\}$ has bounded p-variation.

Let Y, Z be two p-semimartingales with continuous trajectories and let Z = M + A, where its summands are continuous processes. Then the Stratonovich integral $(S) \int Y(s) dZ(s)$ is defined by the formula

$$(S) \int_{0}^{t} Y(s) dZ(s) := \int_{0}^{t} Y(s) dZ(s) + \frac{1}{2} [Y, Z](t), \qquad t \geqslant 0.$$

The first integral we understand as a sum of two integrals

$$(SI) \int_{0}^{t} f(Y_s) dM_s$$
 and $(RS) \int_{0}^{t} f(Y_s) dA_s$,

where the symbol SI denotes the usual stochastic integral and the symbol RS denotes the Riemann-Stieltjes integral.

Consider the equation

$$X_t = \xi + (S) \int_0^t f(X_s) dZ_s, \qquad t \geqslant 0,$$

or equivalent equation

$$X_{t} = \xi + \int_{0}^{t} f(X_{s}) dZ_{s} + \frac{1}{2} \int_{0}^{t} ff'(X_{s}) d[M]_{s}, \qquad t \geqslant 0.$$
 (1)

For short, we shall write $ff'(X_s)$ instead of $f(X_s)f'(X_s)$.

The purpose of this paper is to find conditions when the weak solution of the equation (1) exists.

Definition 2. We say that the equation (1) has a weak solution if there exists a stochastic basis $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{F}}, \widetilde{\mathbb{P}})$ and an $\widetilde{\mathbb{F}}$ adapted processes $\widetilde{X}, \widetilde{\xi}, \widetilde{Z}, [M]$ such that $\mathcal{L}(\widetilde{\xi}, \widetilde{Z}, [M]) = \mathcal{L}(\xi, Z, [M])$ and (1) holds for $\widetilde{X}, \widetilde{\xi}, \widetilde{Z}, [M]$ in place of $X, \xi, Z, [M]$.

For $0 < \alpha \leqslant 1$, $C^{\alpha}(\mathbb{R})$ is the space of bounded Hölder functions g with the norm

$$||g||_{\alpha} := |g|_{\infty} + |g|_{\alpha} = \sup_{x} |g(x)| + \sup_{x \neq y} \frac{|g(x) - g(y)|}{|x - y|^{\alpha}} < \infty.$$

The main result of this paper is the following theorem.

Theorem 3. Let $f \in C^1(\mathbb{R})$ and $\mathbf{E} \sup_{t \leq T} |M_t| < \infty$ for every T > 0. Then there exists a weak solution of equation (1).

1. Basic notions and auxiliary results

All facts mentioned below on the p-variation are taken from [1] The p-variation, 0 , of a real-valued function <math>f on [a, b] is defined as

$$v_p(f; [a, b]) = \sup_{\kappa} \sum_{k=1}^n |f(x_k) - f(x_{k-1})|^p,$$

where the supremum is taken over all subdivisions $\varkappa = \{x_i: i = 0, \ldots, n\}$ of [a, b] such that $a = x_0 < x_1 < \ldots < x_n = b$. If $v_p(f; [a, b]) < \infty$, f is said to have bounded p-variation on [a, b]. Let

$$\mathcal{W}_p([a,b]) := \big\{f\colon\, [a,b] \to \mathbb{R}\colon\, v_p(f;[a,b]) < \infty\big\}.$$

Define $V_p(f) := V_p(f; [a, b]) = v_p^{1/p}(f)$, which is a seminorm on $\mathcal{W}_p([a, b])$ provided $p \ge 1$ and $V_p(f)$ is 0 if and only if f is a constant.

Let $f \in \mathcal{W}_q([a,b])$ and $h \in \mathcal{W}_p([a,b])$ with $1 \leqslant p < \infty, q > 0, 1/p + 1/q > 1$. If f and h have no common discontinuities then the RS integral $\int_a^b f \, dh$ exists and the Love-Young inequality

$$\left| \int_{-b}^{b} f \, dh - f(y) \left[h(b) - h(a) \right] \right| \leqslant C_{p,q} V_{q}(f; [a, b]) V_{p}(h; [a, b]), \tag{2}$$

holds for any $y \in [a, b]$, where $C_{p,q} = \zeta(p^{-1} + q^{-1})$, $\zeta(s) = \sum_{n \geqslant 1} n^{-s}$. If, moreover, the function h is continuous, i.e., $h \in CW_p([a, b])$, then the indefinite integral $\int_a^y f \, dh$, $y \in [a, b]$, is a continuous function.

Let τ and σ be a stopping times such that $\sigma < \tau \leqslant T$. Define $v_p(Y; [\sigma, \tau]) := v_p(Y^\tau - Y^\sigma; [0, T])$, where $Y^\tau = \{Y_{t \wedge \tau}, t \ge 0\}$.

Any local martingale is locally of bounded q-variation for each q>2 (see [6] and [8]). Moreover, for q>2 and $1\leqslant r<\infty$ there is a finite constants $K_{q,r}$ such that for every r-integrable martingale $M=\{M(t), 0\leqslant t\leqslant T\}, T>0$,

$$\mathbf{E}\big\{V_q\big(M;[0,T]\big)\big\}^r\leqslant K_{q,r}\mathbf{E}\Big\{\sup_{0\leqslant t\leqslant T}\big|M(t)\big|\Big\}^r.$$

Moreover, if M is a continuous martingale then by the Burkholder-Davis-Gundy inequality we get

$$\mathbf{E}\{V_q(M;[0,T])\}^r \leqslant K_{q,r}\ell_r \mathbf{E}\langle M \rangle_T^{r/2},$$

where ℓ_r is the constant from the Burkholder-Davis-Gundy inequality.

2. Proofs

Let $\varkappa^i=\{t_k^i\colon k\geqslant 0\}$ be a sequence of partitions of $[0,\infty)$, i.e., $0=t_0^i< t_1^i< t_2^i<\cdots$, $\lim_{k\to\infty}t_k^i=\infty$, such that for every T>0 we have $\max_{k\leqslant r^i(T)}|t_{k+1}^i-t_k^i|\to 0$ as $i\to +\infty$, where $r^i(T)=\max\{k\colon t_k^i\leqslant T\}$. For every $x\in D(\mathbb{R})$ and \varkappa^i the sequence $\{x^{\varkappa^i}\}$ denotes the following discretizations of x:

$$x_t^{\varkappa^i} = x(t_k^i) \qquad \text{for } t \in [t_k^i, t_{k+1}^i), \ k \in \mathbb{N} \cup \{0\}, \ i \in \mathbb{N}.$$

Define the approximations

$$X^n_t=\xi+\int\limits_0^tf\big(X^n_{s-}\big)dZ^{\varkappa^n}_s+\frac{1}{2}\int\limits_0^tff'\big(X^n_{s-}\big)d[Z^{\varkappa^n}]_s,\quad t\geqslant 0,\;n\in\mathbb{N},$$

130 K. Kubilius

and

$$\widehat{X}^n_t = \xi + \int\limits_0^t f(\widehat{X}^{n,\varkappa^n}_{s-}) dZ_s + \frac{1}{2} \int\limits_0^t ff'(\widehat{X}^{n,\varkappa^n}_{s-}) d\langle M \rangle_s, \quad t \geqslant 0, \ n \in \mathbb{N}.$$

Lemma 4. Let $f \in C^1(\mathbb{R})$ and let q > 2 be such that $\frac{1}{q} + \frac{1}{p} > 1$, where $1 \le p < 2$. Then the sequence $\{V_q(\widehat{X}^n; [0,T])\}$ is tight in \mathbb{R} for every T > 0 and the sequence $\{\widehat{X}^n\}$ is C-tight.

Proof. Denote

$$\gamma_N = \inf\{t > 0: \langle M \rangle_t > N, V_p(A; [0, t]) > N\},$$

and

$$\widehat{X}_{t}^{n,N} = \xi + \int_{0}^{t} f(\widehat{X}_{s-}^{n,N,\varkappa^{n}}) dZ_{s}^{N} + \frac{1}{2} \int_{0}^{t} f f'(\widehat{X}_{s-}^{n,N,\varkappa^{n}}) d\langle M \rangle_{s}^{N}, \quad t \geqslant 0, \ n \in \mathbb{N},$$

where $Y^{n,N}(t) = Y^n(t \wedge \gamma_N)$.

Similarly as in [4] Lemma 1 one can get

$$\begin{split} \mathbf{E} V_q \big(\widehat{X}^{n,N}; [0,T] \big) &\leqslant \frac{1}{1-\alpha} \left\{ K_{q,1} \ell_1 | f|_\infty \mathbf{E} \sqrt{\langle M \rangle_T^N} + C_{p,q/\alpha} | f|_\infty \mathbf{E} V_p (A^N; [0,T]) \right. \\ & + |f|_\infty |f'|_\infty \mathbf{E} \langle M \rangle_T^N \right\} + \mathbf{E} \left\{ C_{p,q/\alpha} |f|_\alpha V_p (A^N; [0,T]) \right\}^{1/(1-\alpha)} \\ &\leqslant \frac{1}{1-\alpha} \left\{ K_{q,1} \ell_1 |f|_\infty \sqrt{N} + C_{p,q/\alpha} |f|_\infty N \right. \\ & + |f|_\infty |f'|_\infty N + \left\{ C_{p,q/\alpha} |f|_\alpha N \right\}^{1/(1-\alpha)}. \end{split}$$

Thus

$$\mathbf{P}(V_q(\widehat{X}^n; [0, T]) > K) \leq \mathbf{P}(\gamma_N < T) + K^{-1}\mathbf{E}V_p(\widehat{X}^{n, N}; [0, T])$$

$$\leq \mathbf{P}(\langle M \rangle_T > N, V_p(A; [0, T]) > N) + K^{-1}\mathbf{E}V_q(\widehat{X}^{n, N}; [0, T]),$$

and the sequence $V_q(\widehat{X}^n; [0,T])$ is tight in \mathbb{R} .

Now we prove the tightness of $\{\widehat{X}^n\}$. We use the well known Aldous criterion. Let τ^n , $n \ge 1$, be stoping times such that $\tau^n \le T$. Then by inequality (2)

$$\sup_{t \leq \delta} \left| \widehat{X}_{\tau^n + t}^n - \widehat{X}_{\tau^n}^n \right| \leq \sup_{t \leq \delta} \left| \int_{\tau^n}^{\tau^n + t} f(\widehat{X}_{s-}^{n, \varkappa^n}) dM_s \right|$$

$$+ C_{p,q} \left\{ |f'|_{\infty} V_q(\widehat{X}^n; [0, T]) + |f|_{\infty} \right\} V_p \left(A; [\tau^n, \tau^n + \delta] \right)$$

$$+ |f|_{\infty} |f'|_{\infty} (\langle M \rangle_{\tau^n + \delta} - \langle M \rangle_{\tau^n}).$$

By the Lenglart-Rebolledo inequality for every ε , η we have

$$\begin{split} \mathbf{P} \bigg(\sup_{t \leqslant \delta} \bigg| \int_{\tau^{n}}^{\tau^{n}+t} f(\widehat{X}_{s-}^{n,\varkappa^{n}}) dM_{s} \bigg| > \varepsilon \bigg) \\ & \leqslant \varepsilon^{-2} \mathbf{E} \bigg\{ \bigg(\int_{\tau^{n}}^{\tau^{n}+\delta} f^{2} \big(\widehat{X}_{s-}^{n,\varkappa^{n}} \big) d\langle M \rangle_{s} \bigg) \wedge \eta \bigg\} + \mathbf{P} \bigg(\int_{\tau^{n}}^{\tau^{n}+\delta} f^{2} \big(\widehat{X}_{s-}^{n,\varkappa^{n}} \big) d\langle M \rangle_{s} \geqslant \eta \bigg) \\ & \leqslant \varepsilon^{-2} \mathbf{E} \bigg\{ \big| f \big|_{\infty}^{2} \big(\langle M \rangle_{\tau^{n}+\delta} - \langle M \rangle_{\tau^{n}} \big) \bigg) \wedge \eta \bigg\} + \mathbf{P} \bigg(\big| f \big|_{\infty}^{2} \big(\langle M \rangle_{\tau^{n}+\delta} - \langle M \rangle_{\tau^{n}} \big) \geqslant \eta \bigg). \end{split}$$

Thus we get the tightness of $\{\widehat{X}^n\}$.

Lemma 5. Let $f \in C^1(\mathbb{R})$ and let q > 2 be such that $\frac{1}{q} + \frac{1}{p} > 1$, where $1 \leq p < 2$. Then the sequence $\{V_q(X^n; [0,T])\}$ is tight in \mathbb{R} for every T > 0 and the sequence $\{X^n\}$ is tight in $D([0,\infty))$.

Proof. The proof of the tightness of the sequence $\{V_q(X^n;[0,T])\}$ is similar as in previous lemma.

Since $X^n(t_i^n) = \widehat{X}^n(t_i^n)$ for all $i \ge 0$ then for every T > 0 we get

$$\begin{split} \sup_{t\leqslant T} \left|X^n_t - \widehat{X}^n_t\right| & \quad \cdot \\ &\leqslant |f|_{\infty} \sup_{t\leqslant T} \left|Z(t) - Z^{\varkappa^n}(t)\right| \\ & \quad + |f|_{\infty}|f'|_{\infty} \sum_{i=1}^{r^n(T)} \left|M(t^n_i) - M(t^n_{i-1})\right| \cdot \left|A(t^n_i) - A(t^n_{i-1})\right| \\ & \quad + |f|_{\infty}|f'|_{\infty} \sum_{i=1}^{r^n(T)} \left|A(t^n_i) - A(t^n_{i-1})\right|^2 + |f|_{\infty}|f'|_{\infty} \sup_{t\leqslant T} \left|\langle M\rangle(t) - \langle M\rangle^{\varkappa^n}(t)\right| \\ & \quad + \sup_{t\leqslant T} \left|\sum_{i=1}^{r^n(t)} f'(\widehat{X}^n(t^n_{i-1}))\left[\left(M(t^n_i) - M(t^n_{i-1})\right)^2 - \left(\langle M\rangle(t^n_i) - \langle M\rangle(t^n_{i-1})\right)\right]\right|. \end{split}$$

Therefore $\sup_{t\leqslant T}|X^n_t-\widehat{X}^n_t|\overset{\mathbf{P}}{\to}0$, as $n\to\infty$. By Lemma ?? we have that the sequence $\{\widehat{X}^n\}$ is tight. Thus by Lemma 3.31 in Section 6 in [2] we obtain that the sequence $\{X^n\}$ is tight.

Proof of Theorem 1. Define $M^n=M^{\varkappa^n}$ and $A^n=A^{\varkappa^n}$. The process (M^n,\mathbb{F}^n) is a martingale, where $\mathbb{F}^n=(\mathcal{F}_{\rho^n(t)}),\, \rho^n(t)=\max\{t_k^n\colon t_k^n\leqslant t\}$. The process A^n has locally bounded p-variation since $V_p(A^n;[0,T])\leqslant V_p(A;[0,T])$. By this inequality it follows that the sequence $\{v_p(A^n;[0,T])\}$ is tight in \mathbb{R} . Note that $M^n\to M$ a.s. and $A^n\to A$ a.s. in C([0,T]). Moreover,

$$\sup_{t \le T} \left| [M^n]_t - \langle M \rangle_t \right| \xrightarrow{\mathbf{P}} 0, \qquad n \to \infty,$$

where

$$[M^n]_t = \sum_{k=1}^{r^n(t)} \left(M(t_k^n) - M(t_{k-1}^n) \right)^2.$$

By Lemma 5, by Corollary 3.33 in Section 6 in [2], and facts obtained above it follows that the sequence $\{(X^n, M^n, A^n, [M^n], \xi)\}$ is C-tight. Thus from every subsequence $\{n'\} \subset \{n\}$ we can choose a further subsequence $\{n''\}$ such that

$$(X^{n''}, M^{n''}, A^{n''}, [M^{n''}], \xi) \xrightarrow{D} (\widetilde{X}, \widetilde{M}, \widetilde{A}, [\widetilde{M}], \widetilde{\xi}),$$

as $n'' \to \infty$, where $(\widetilde{X}, \widetilde{M}, \widetilde{A}, [\widetilde{M}], \widetilde{\xi})$ is defined on some probability space $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbf{P}})$ and $\mathcal{L}(\widetilde{\xi}, \widetilde{M}, [\widetilde{M}], \widetilde{A}) = \mathcal{L}(\xi, M, [M], A)$. Since

$$\sup_{t\leqslant T}\left|[Z^{\varkappa^{n''}}]_t-[M^{n''}]_t\right|\stackrel{\mathbf{P}}{\longrightarrow} 0,$$

as $n'' \to \infty$, and functions f and ff' are continuous, then by the continuous mapping theorem

$$(X^{n''}, f(X^{n''}), ff'(X^{n''}), M^{n''}, A^{n''}, [Z^{\kappa^{n''}}], \xi)$$

$$\xrightarrow{D} (\widetilde{X}, f(\widetilde{X}), ff'(\widetilde{X}), \widetilde{M}, \widetilde{A}, [\widetilde{M}], \widetilde{\xi}).$$

By Lemma 5, we get the tightness of the sequence $\{v_q(f(X^n);[0,T])\}, q > 2, T > 0$, in \mathbb{R} . Note that

$$\sup_{n} \mathbf{E} \sup_{t \leqslant T} |\Delta M_{t}^{n}| \leqslant 2 \mathbf{E} \sup_{t \leqslant T} |M(t)|.$$

Thus conditions of Lemma 3 in [5] are satisfied and

$$\left(X^{n''}, \int_{0}^{\cdot} f(X_{s-}^{n''}) dM_{s}^{n''}, \int_{0}^{\cdot} f(X_{s-}^{n''}) dA_{s}^{n''}, \int_{0}^{\cdot} ff'(X_{s-}^{n''}) d[Z^{\varkappa^{n''}}]_{s}, \xi\right)$$

$$\xrightarrow{D} \left(\widetilde{X}, \int_{0}^{\cdot} f(\widetilde{X}_{s}) d\widetilde{M}_{s}, \int_{0}^{\cdot} f(\widetilde{X}_{s}) d\widetilde{A}_{s}, \int_{0}^{\cdot} ff'(\widetilde{X}_{s}) d[\widetilde{M}]_{s}, \widetilde{\xi}\right).$$

Therefore

$$\sup_{t \leqslant T} \left| X_t^{n''} - \xi - \int_0^t f(X_{s-}^{n''}) dZ_s^{\varkappa^{n''}} - \frac{1}{2} \int_0^t f f'(X_{s-}^{n''}) d \left[Z^{\varkappa^{n''}} \right]_s \right|$$

$$\xrightarrow{D} \sup_{t \leqslant T} \left| \widetilde{X}_t - \widetilde{\xi} - \int_0^t f(\widetilde{X}_s) d\widetilde{Z}_s - \frac{1}{2} \int_0^t f f'(\widetilde{X}_s) d \left[\widetilde{M} \right]_s \right|.$$

As a consequence

$$\widetilde{X}_t = \widetilde{\xi} + \int_0^t f(\widetilde{X}_s) d\widetilde{Z}_s + \frac{1}{2} \int_0^t ff'(\widetilde{X}_s) d[\widetilde{M}]_s, \qquad t \leqslant T.$$

References

- [1] R.M. Dudley, R. Norvaiša, An introduction to p-variation and Young integrals, Lecture Notes, 1, Aarhus University (1998).
- [2] J. Jacod, A.N. Shiryayev, Limit Theorems for Stochastic Processes, Vol. 1, Fiziko-Matematicheskaja Literatura, Moscow (1994.)
- [3] K. Kubilius, On approximation of stochastic integral equations driven by continuous p-semimartingales, Lith. Math. J. (special issue), 41, 165-170, (2001).
- [4] K.Kubilius, The existence and uniqueness of the solution of the integral equation driven by a p-semimartingale of the special type, Stochastic Processes Appl., 98, 289-315 (2002).
- [5] K. Kubilius, On weak solutions of an integral equation equation driven by a p-semimartingale of special type (2002).
- [6] D. Lépingle, La variation d'ordre p des semi-martingales, Z. Wahrs. Verw. Gebiete, 36, 295-316 (1976).
- [7] R. Norvaiša, Quadratic variation, p-variation and integration with applications to stock price modeling. The Fields Institute, Toronto (available at http://xxx.lanl.gov) (2001).
- [8] G. Pisier, Q. Xu, The strong p-variation of martingales and orthogonal series, Probab. Th. Rel. Fields, 77, 497-514 (1988).

Apie silpnus Stratanovičiaus integralinės lygties sprendinius, valdomus tolydžiu p-semimartingalu

K. Kubilius

Nagrinėjamas silpno Stratanovičiaus integralinės lygties sprendinio, valdomo tolydaus p-semimartingalo, egzistavimas.