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1. Introduction
In this paper we are concerned with the Cauchy problem

L{u] = u,+ H(t,z,u,us) =0, ¢))
u(0,z) = () @

in S = {t € (0,T), = & R™}. It is well known that, in general, there is no hope
to find classical solutions of this problem. The first definition of generalized solution
for general equation (1) (so called semiconcave solution) were introduced by Douglis
(4] and Kruzkov [9]. They proved the existence uniqueness-and stability of this solution
when Hamiltonian is convex and the initial function is Lipshitz. The work [5] extended
these results to the lower semicontinuous and bounded initial function. The other way
to investigate problem (1), (2) is to work with the viscosity solutions [1-3, 8]. In these
works the general condition of growth of initial function is boundness by linear function
(may be from below).
In [6] we consider the equation

up + (A(T)ug, ug) = 0, ' 3)
with matrix A(zx) € C**(R™) satisfying
a1l€]® < (A(2)€,€) < azl€)?,  a1,a2 > 0.

We proved the existence and uniqueness of semiconcave solution of (3), (2) satisfying the
growth condition

lim |z|~2|u(t,z)| =0,

|z|—o00

when the initial function is lower semicontinuous and satisfies

lim |z|~%|p(z)| = 0.
|z|—o00
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The purpose of this paper is to extend the analogous result for semiconcave solutions
of general equation (1). We will prove that the growth of initial function, as |z| — oo,
naturally depends from the growth of H,(t,z,u,v) as |u|,|v] — oco. We will give a
correct definition of semiconcave solution in this case. The proof of this result is based on
representation formula for solutions introduced in [5]. Now we formulate the definition
of semiconcave solution and some propositions of this work, which we use further.

2. The representation formula for bounded semiconcave solutions of (1), (2)

Let H(t,z,u,v) € C*(Qr), Qr = {(t,z) € ST, u € R, p € R"}, satisfies:
l.3a > 0,c;,co = 0,V€ € R™,i = 1 + n, uniformly in Qp: ’

(Hyu€,€) > al€f?, )
H(t,z,u,0) = H,(t,z,u,0) =0, 5
IHII < c, Hu 2 —c

2.Yu>=0,4,j=1+n,3N, > 0:

Huu 2 _“7
|Hpz:| + [viHou| < plpl,
|Hzz;| + | Hzjupil < plpl?,
inQf = {(t,z) € St, we R, |p| > N, }.
3. The function H(t,z,u,v) and its derivatives till second order are bounded on
QM = {(t,z) € St, |u| < M, |p| < M},VM > 0.
The definition of semiconcave solution of (1), (2), when ¢ is bounded and Lipshitz,
is next [9].

DEFINITION 1. The bounded and Lipshitz on S = {t € [0,T], z € R"}function
u(t, z) is called semiconcave solution of (1), (2) if u(¢, z) a.e. in St satisfy (1) and there
exits the constant Cs > 0 that

u(t, x4+ 1) — 2u(t, z) + u(t,z — ) < Cs|l)? (6)
forV(t,z +1), (¢, z), (t,z 1) € {t € [6,T), 2 € R"}.

Let us now suppose ¢ is bounded and lower semicontinuous in R™. Then the definition
of semiconcave solution is given in [5].

DEFINITION 2. The bounded on St and locally Lipshitz on St function u(t, x) is semi-
concave solution of (1), (2) if u(t, z) a.e. in St satisfy (1), (6) and

3Ln(1)u(t,x) = o(z). Q)]
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Let u®™(t, z, €) is the semiconcave solution of (1), (2) in the sense of Definition 1
satisfying the initial condition

u®"(0, z, £) = min{c|z — €|, m}.
Suppose

Gm(t,x, &) = supu®™(t, z, &).
c>0

It is known (Lemma 3, [5]) this function is the semiconcave solution of (1) in the sense
of Definition 2 with the initial data

0,z=¢,
m,z # &

The Theorem 2 [5] implies the following

Gm(oa x, f) = { (8

Theorem 1. Let H satisfies given conditions. Then for bounded and lower semiconti-
nuous initial function o(x) (|p(x)| < m) the formula

u(t,z) = inf (9(6) + Cm(t, z,€))

gives the unique semiconcave solution in the sense of Definition 2.

3. The representation formula for the unbounded semiconcave solution of (1), (2)
Now we will require H, satisfies
|Hy(t, z,u,v)| < a1|v]* + aq, 9)

where a > 1, for some ay,a; > O and all (¢,z) € St,u € R, v € R™. We introduce a
new definition of semiconcave solution of (1), (2) for the unbounded initial data.

DEFINITION 3. The locally Lipshitz function u(t, <), satisfying a.e. (1) on St, is semi-
concave solution of (1), (2) if u(t, z) satisfies (7) and

u(t,z +1) — 2u(t,z) + u(t,z — 1) < K,|l)? (10)
forV(¢t,z + 1), (t,z),(t,z— 1) e Sphr={t € [%,T], |z| < n},

lim inf |z|* " u(t,z) =0 (11)

|| —+o0

uniformly in [0, 7.
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Define

G(t,z,€&) = sup Gn(t, z,§).

m>0

Theorem 2. The function G is the semiconcave solution of (1), (2) in the sense of Defi-
nition 3 satisfying initial condition

O’ x=€i

oo, THE. 12

60,2, = {
Proof. Fix any £ € R™. According to (4)
0= L[uc,m] > u:,m + %|u§,m|2 —I0 [uc,m].

We can calculate that

2
G?n=min{|m ¢l ,m}

at

gives the semiconcave solution of equation
ug + %|U1|2 =0
with the initial data (8). So, we have
) < 1°(63),
and
ue™ (0,7, 8) < G%(0, 2, €).
Applying the comparison theorem for equation (12) [9] we see
u®™(0,,€) < Gou(0,2,8),

and so

— £|2 _£12
Gt 2, €) < min{ |2 atfl ,m} gt 1

at

Thus the function G is everywhere finite and satisfies

2
G(t,z,€) < B—;ti' (13)
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Now we prove that
G(t,x,€) = Gult, z,8), (14)

when (t,z) € O¢(m) = {|z — €] < vamt¢, t € [0,T]}. The formula (8) implies
Gs 2 G, when s > m. From (5) we observe that constant is solution of (1). Then,
using the uniqueness of semiconcave solutions, see Theorem 1, and Lemma 1 [5], we
conclude that

Gi(t,z,&) = min{G,(t, z,£), m}.

Letting s — +o00, we deduce (14). Because the domains O¢(m) cover up Sr and G,,
is semiconcave solution of (1) we ensure the G is locally Lipshitz, satisfies a.e. in St
(1) and (10). Notice, that (5) implies L{u“™] = L[0] and u>™(0,z,£) > 0, so from
Theorem 1 we see u®™(t,z,£) > 0. Thus G > 0 and this proves (11).

Finally we prove (12). The Lemma 3 [5] implies that u>™ = m, when (t,z) €
{Il - él > % + Rc,mt}’ where Supp, . |Hv| < Rc,m and Dc,m = {(t’ 17) € Sr, |u| <
m, |v| < /(e + e1T)e2T}. From definition of G we have G > m, when (¢,z) €
We(m) = {|lz - €| > iﬂf)(% + R mt) = R,u(t)}. The (9) and the inequality

a+b
2

" lal + fble

< 5 (15)

. c2T |a T
fora > 1,a,b € R, imply that we can take R, ,,, = 1f2yne® e ta12vnerTeT|" |

2
c2T|a coT o
as = bi|c|* + by, there b; = a1f2y/me |7 e s and by = wl2/naTe? |7 "cz‘Te -+ ay . Then

calculus shows
Ro(t) = m=3T (byt) ™ k(a) + bot.

Let z # €. Then for every large m = 0 we can find suitably small ¢ that |z — €| > R,,(t)
and so G(t, z, £) > m. This proves (12) because from (4), (5) follows that solution of (1)
is the nondecreasing, as t — 0, function.

Theorem 3. Let H satisfies given conditions. Then for locally bounded and lower semi-
continuous initial function satisfying

limI Iin£ lz] () = 0, (16)
the formula
u(t,z) = Anf (0(6) + G (t,2,€)) a7

gives the unique semiconcave solution in the sense of Definition 3.



174 G. Gudynas

Proof. First we will give the more precise estimate from bellow for G. Define

0» Ix - £| s b2t1
B(t,w,6) =0 1 (le— €] - bat)H, o —¢ > bt (18)
(bit) @ k(a) @

The calculus shows that &(t, z,£) = m when (t,z) € Sm(§) = {lz — & = Rn(t)}.
We have G(t,z,£) > m = ®(t,z,§) on Sm(€) and G(t,x,€) > 0 = ®(t, z,£), when
|z — €| < bat. The surfaces Sy (€), m 2> 0, and cone {|z — &| < bat} cover up St, so

G=>d (19
on St. Let p(z) satisfies (16), then
@(€) + G(t, z,€) = p(€) + 2(t,2,§) = +00,

uniformly on compacts in St, as |€| — +oo. So, for any compact K c St, we have
the ball B, = {£: |€| < rk} where the infimum in (17) is available when (t,z) € K.
Define

_ ()0(6), |£' < TK,
ric(€) = { -Mg, €2k,

where My = supje<ry |9(€)|. According (14) we can choose m = mg that
G(t,z,8) = Gmy (t,,6) if (t,z) € Kand £ € B, . Then

u(t,a:) = {ienlg"((PrK (5) + GmK (t,.’L‘, &))7

when (t,z) € K. Theorem 1 implies the function u is locally Lipshitz, satisfying (1) a.e.
in St and (10). .

Now we prove (7). Fix any © € R". Suppose &(t, z) gives infimum in (17), when
t € [0, T). We will prove that £(t, z) — z,as t — 0. From (1), (4), (5), (17) we have

u(t,z) = p(&(t, 7)) + G(t, 7, €(t, ©)) < p(2)-
The (19) implies

(12 — £(t, 2)] — bat) 5 < (018) 3 k(@) (li(2)] = p(£(2,2)))-

From this inequality and (16) follows the set £(t, z) is bounded for allt € [0,T] and
£(t,z) — , as t — 0. Let |z — £(t, 7)| < &(t), where g(t) — 0,ast — 0. Then

L (eO) < inE (9(6) +C6:3.0) < ola)
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The semiconcavity of ¢(x) implies

lim inf  (¢(£)) = ¢(2),

t—0 |z—£|<e(t)
and this prove (7).

Now we will show (11). The (16) implies that for any small 2 > O there exists
o, such that

atl
p(z) = —oy — pla| ™=

According (17)—(19) we deduce

u(t,z) > Jnf { — o — el + (o~ ¢l - bzt)%ﬂ}, 20)

1
(b1t)F k(a) "
if |z — €] > bat. Otherwise we see

. o+l
> —a, — e
uto)> int (- - g,

and so ‘

u(t,z) > —ay — ||+ bst) =
Suppose s = |z — £| — bat. Then

|€] = |z + € — x| < |z| + bat + s.

Using (15), (20) we can write

d(t, z) 2 inf { —ay — 2%u(|x| + bgtl)uu_tl

5€[0,+00)
()
(bit)*k(a) s '

Thus
u(t,2) > —a — 2 || + bat)
if u > 0 is sufficiently small. This proves (1 1).

Now we establish the uniqueness of solution. Let v(t, =) is any other solution. From
(11) we have that for any small p > 0 there exists 3, > O such that

atl
ot z) > ~Bu — pla| =
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for all t € [0, T). Define 6, (t, =) by formula (17)

Su(t,z) = inf (6,(0,€) + G(t,z,€)),

where

2(0,2) = { +oo, = <n,

atl
By — %=, |zl 2.

Suppose now

oaltr2) = {min{”(t’ D) 6at))s Izl <7

atl
—Bu — ulnl ™, |z| > n.

It is easily to show that v, (¢, z) is bounded semiconcave solution of (1) satisfying the
initial condition

0.(0.7) = {99(1'), Jal <,

241

—By = pln| =, || > n.
According to Theorem 1 it is unique. Now we will prove that for any (to, zo) € St there
exists ng that

6n(t07 IO) 2 U(to, IEO),

21
if n > ng and |zo| < no. Using (19), (20) we see

. atl
6n(to, To) = min { = Bu— pln| = +
[€l=n

atl

1 ' a4l
W(lzo —€l - bzto)+}
l 0 o 3
4

2 "'ﬂy - lu'ln

atl

——————7r (n — [zo| — bato) =,
(bito) = k(a)*=
when |zo| < 7, |To| + bato < 7, 50 liMn— 400 6n(t0, To) = +00, if

1

< —
“ 2 rto) 2 k(a) 2

This proves (21) and 50 v(to, To) = Vn(to; To). The uniqueness of v, (t, =) ensures the
uniqueness of v(t, ).
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Apie Hamiltono-Jakobi lygties sprendiniu iSraiSka neapréztos
pradinés funkcijos atveju '

G. Gudynas

Nagrinéjamas Kosi uZdavinys bendrai Hamiltono—Jacobi lyggiai

ue + H(t,z,u,uz) =0,
u(O) ‘T) = <p(:l:),

kai pradiné funkcija ¢(z) pusiau tolydi i§ apatios ir neapréZta erdvéje R™. I3kilaus Hamiltoniano
atveju, kai egzistuoja a > 1, a1, a2 > 0 tokie, kad

|Ho(t, 2,u,0)| < art|v]* + az,

visiems (¢, z) € ST, u € R, v € R™, gauta pusiau igaubto sprendinio i§raifka ir irodyta jo vienatis,
kai

. . _etl
lim inf |z|”7e u(t,z) =0.
|z|—+o0



