On the denseness in the space of analytic functions

Antanas LAURINČIKAS (VU)

e-mail: antanas.laurincikas@maf.vu.lt

For any region G on the complex plane, by H(G) we denote the space of analytic on G functions equipped with the topology of uniform convergence on compacta. Let G_1, \ldots, G_n be simply connected regions on \mathbb{C} , and $H(G_1, \ldots, G_n) = H(G_1) \times \ldots \times H(G_n)$. In the theory of zeta-functions we have often to consider the denseness in $H(G_1, \ldots, G_n)$ of some series. For this aim the following statement is useful. Denote by $\mathcal{B}(\mathbb{C})$ the class of Borel sets of \mathbb{C} .

Theorem. Let $\{\underline{f}_m\} = \{(f_{1m}, \ldots, f_{nm})\}$ be a sequence in $H(G_1, \ldots, G_n)$ which satisfies:

 1^0 If μ_1, \ldots, μ_n are complex measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with compact supports contained in G_1, \ldots, G_n , respectively, such that

$$\sum_{m=1}^{\infty} \left| \sum_{j=1}^{n} \int_{\mathbf{C}} f_{jm} \, \mathrm{d}\mu_{j} \right| < \infty,$$

then

$$\int_{C} s^{r} \, \mathrm{d}\mu_{j}(s) = 0$$

for
$$j = 1, ..., n$$
, $r = 0, 1, 2, ...$;
2⁰ The series

$$\sum_{m=1}^{\infty} \underline{f}_m$$

converges in $H(G_1,\ldots,G_n)$; 3^0 For any compacts $K_1\subseteq G_1,\ldots,K_n\subseteq G_n$,

$$\sum_{m=1}^{\infty} \sum_{j=1}^{n} \sup_{s \in K_j} \left| f_{jm}(s) \right|^2 < \infty.$$

Then the set of all convergent series

$$\sum_{m=1}^{\infty} a_m \underline{f}_m$$

with $|a_m|=1, m=1,2,\ldots$, is dense in $H(G_1,\ldots,G_n)$.

Note that the case n=1 was considered in [2], Theorem 6.3.10, and for $G_1=\ldots=G_n$ the theorem was obtained by B. Bagchi [1]. However, for example, the investigation of the joint universality of zeta-functions attached to cusp forms of different weight require to consider the case of the space $H(G_1,\ldots,G_n)$.

Proof of the theorem. Let K_j be a compact subset of G_j , $j=1,\ldots,n$. We choose a simply connected region V_j such that $K_j \subseteq V_j$, the closure \overline{V}_j is a compact subset of G_j and the boundary ∂V_j of V_j , $j=1,\ldots,n$, is an analytic simple closed curve. Consider the Hardy space $H^2(V_j)$, see the definition in [2], Section 6.6.3, which is an Hilbert space, $j=1,\ldots,n$. Now let

$$H^2(V_1,\ldots,V_n)=H^2(V_1)\times\ldots\times H^2(V_n).$$

Define for $\underline{f} = f(f_1, \ldots, f_n)$, $\underline{g} = (g_1, \ldots, g_n) \in H^2(V_1, \ldots, V_n)$ the inner product by

$$(\underline{f},\underline{g}) = \sum_{j=1}^{n} (f_j,g_j),$$

where (f_j, g_j) is the inner product on $H^2(V_j)$, j = 1, ..., n. Thus we have that $H^2(V_1, ..., V_n)$ is an Hilbert space again. By the proof of Theorem 6.3.10 from [2] we have

$$\|\underline{f}_m\|^2 = (\underline{f}_m, \underline{f}_m) = \sum_{j=1}^n (f_j, f_j) = \sum_{j=1}^n \|f_j\|^2 = B \sum_{j=1}^n \sup_{s \in V_j} |f_j(s)|^2.$$

Here B is a quantity bounded by a constant. Therefore in view of the condition 3^0 , by the choice of V_i ,

$$\sum_{m=1}^{\infty} \|\underline{f}_m\|^2 < \infty.$$

Now let $g \in H^2(V_1, \ldots, V_n)$ be such that

$$\sum_{i=1}^{\infty} \left| (\underline{f}_{m}, \underline{g}) \right| < \infty. \tag{1}$$

Using the formula for the inner product in $H^2(V_j)$, see [2], Section 6.6.3, we obtain that there exists a complex measure μ_j on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ with support contained in ∂V_j , $j=1,\ldots,n$, such that

$$(\underline{f}_m, \underline{g}) = \sum_{j=1}^n \int_{\mathbb{C}} f_{jm} d\mu_j.$$

Hence by (1)

$$\sum_{m=1}^{\infty} \left| \sum_{j=1}^{n} \int_{\mathbb{C}} f_{jm} \, \mathrm{d}\mu_{j} \right| < \infty,$$

and therefore by the hypothesis 10 of the theorem

$$\int_{\mathbb{C}} s^r \, \mathrm{d}\mu_j = 0$$

for $j=1,\ldots,n, r=0,1,2,\ldots$ This means that g_j is orthogonal to all the polynomials, $j=1,\ldots,n$. Since the polynomials are dense in the topology of $H^2(V_j)$, hence we obtain that $g_j=0, j=1,\ldots,n$, and $\underline{g}=\underline{0}$. Consequently,

$$\sum_{m=1}^{\infty} \left| (\underline{f}_m, \underline{g}) \right| = \infty$$

for $\underline{0} \neq \underline{g} \in H^2(V_1, \dots, V_n)$. Therefore by Theorem 6.1.16 from [2] we obtain that the set of all convergent series in $H^2(V_1, \dots, V_n)$

$$\sum_{m=1}^{\infty} \alpha_m \underline{f}_m$$

with $|\alpha_m|=1, m=1,2,\ldots$, is dense in $H^2(V_1,\ldots,V_n)$. Let $\underline{f}=(f_1,\ldots,f_n)\in H(G_1,\ldots,G_n)$ and $\varepsilon>0$. Since the convergence in the $H^2(V_j)$ topology implies the uniform convergence on compact subsets of $V_j, j=1,\ldots,n$, hence we deduce that there exists a sequence $\{\alpha_m, |\alpha_m|=1\}$ such that the series

$$\sum_{m=1}^{\infty} \alpha_m f_{jm}$$

converges uniformly on K_j for all j = 1, ..., n, and

$$\sum_{i=1}^{n} \sup_{s \in K_{j}} \left| \sum_{m=1}^{\infty} \alpha_{m} f_{jm}(s) - f_{j}(s) \right| < \frac{\varepsilon}{4}.$$

Hence there exists a natural number M such that

$$\sum_{i=1}^{n} \sup_{s \in K_j} \left| \sum_{m=1}^{M} \alpha_m f_{jm}(s) - f_j(s) \right| < \frac{\varepsilon}{2}, \tag{2}$$

and, in view of the hypothesis 20 of the theorem,

$$\sum_{j=1}^{n} \sup_{s \in K_j} \left| \sum_{m=M+1}^{\infty} f_{jm}(s) \right| < \frac{\varepsilon}{2}. \tag{3}$$

Let

$$a_m = \left\{ \begin{array}{ll} \alpha_m, & 1 \leqslant m \leqslant M, \\ 1, & m > M. \end{array} \right.$$

Then (2) and (3) yield

$$\sum_{j=1}^{n} \sup_{s \in K_j} \left| \sum_{m=1}^{\infty} a_m f_{jm}(s) - f_j(s) \right| < \varepsilon,$$

and the theorem is proved.

Let $F_j(z)$ be a holomorphic cusp form of weight κ_j for the full modular group $SL(2,\mathbb{Z})$, and we assume that $F_j(z)$ is a normalized eigenform, $j=1,\ldots,n,$ $n\geqslant 2$. Consider the zeta-functions

$$\varphi(s,F_j) = \sum_{m=1}^{\infty} c_j(m) m^{-s} = \prod_p \left(1 - \frac{\alpha_j(p)}{p^s}\right)^{-1} \left(1 - \frac{\beta_j(p)}{p^s}\right)^{-1}, \quad \Re s > \frac{\kappa_j + 1}{2},$$

 $j=1,\ldots,n$, and their analytic continuation. Here $c_j(m)$ denote the coefficients of the Fourier series expansion for $F_j(z)$, and $c_j(p)=\alpha_j(p)+\beta_j(p)$, $j=1,\ldots,n$.

Let, for |z|=1,

$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots,$$

and define

$$\underline{f}_{p}(s_{1},\ldots,s_{n},a_{p}) = \left(-\log\left(1 - \frac{\alpha_{1}(p)a_{p}}{p^{s_{1}}}\right) - \log\left(\frac{\beta_{1}(p)a_{p}}{p^{s_{1}}}\right),\ldots, \log\left(\frac{\alpha_{n}(p)a_{p}}{p^{s_{n}}}\right) - \log\left(\frac{\beta_{n}(p)a_{p}}{p^{s_{n}}}\right)\right),$$

where $|a_p| = 1$ for all primes p, and for some N > 0,

$$s_j \in D_{j,N} = \left\{ s \in \mathbb{C} : \frac{\kappa_j}{2} < \Re s < \frac{\kappa_j + 1}{2}, |t| < N \right\}, \qquad j = 1, \dots, n.$$

Then the theorem can be applied to prove that the set of all convergent series

$$\sum_{p} \underline{f}_{p}(s_{1},\ldots,s_{n},a_{p})$$

is dense in $H_n = H(D_{1,N}) \times \ldots \times H(D_{n,N})$.

References

- B. Bagchi, The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and other Allied Dirichlet Series, Ph. D. Thesis, Calcuta, Indian Statistical Institute (1981).
- [2] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dord-recht/Boston/London (1996).

Apie tirštumą analizinių funkcijų erdvėje

A. Laurinčikas

Nurodyta pakankama sąlyga, kad konverguojančių eilučių aibė analizinių funkcijų erdvėje būtų tiršta toje erdvėje.