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Introduction

Let us consider a one-dimensional stochastic differential equation
‘ t t
X:=Xo +/b(Xs,s)ds +/o(X,,s)dB3~, t>0, )
0 0
where B = {B;, t > 0} is Brownian motion.

Unfortunately, stochastic differential equations which allow an explicit solution are
rather an exception than the rule. Therefore, the need for numerical approximation me-
thods is even bigger than in the case of deterministic differential equations. In this article
we deal with the approximations of (1) in a weak sense (in a sense of distributions). That
is, we are interested in X" (h > 0), such that, for each fixed ¢ > 0,

|Ef(X}) —Ef(X:)| =0, when h— 0,

for some (wide enough) class of functions f : R — R.

For the models used in the field of economics or financial mathematics perhaps more
important than a solution to stochastic differential equation is an expectation E f (X¢) for
some function f (for example, E(X, — K)*). In this case also one is rarely able to give an
explicit formulae. And even then, such a formulae often involve some special functions
that have to be approximated numerically.

Therefore, we will use a computer to find and visualize Ef(X,) for a given f and
stochastic differential equation (1). It is a common practice to write a separate program
(Pascal programming language here is the most popular choice among mathematicians
for such a purpose) for each model involving (1). There is no need to say, that such an
approach is time consuming and not convenient at all. We would suggest that more univer-
sal software offering a comfort of concentrating on mathematics rather than programming
would be more helpful in modeling.

1. The program

First, we will write a program. A program that would allow to choose stochastic differen-
tial equation, approximation method, function f and many other parameters, for example,
approximation step or number of simulated trajectories. It is clear that such a task is an
example of interface between the theory of stochastic differential equations and computer
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Fig. 1. Main program window.

science. Let us briefly look at the mathematical side. We implement three aproximations
in our work: Euler, Milstein and Runge—Kutta kind of approximation suggested in (2).
Let 7, be a partition of [0..T]

O=tg<t1 <...<tph_1<tp,=T.

Denote, as usual, At; := t; — t;—1 and AB;, := By, — B;,_,. Then we have following
schemes of approximation

Euler scheme Milstein scheme
X 6‘ =Zo X (’)1 =To

Xh=XP  4b(XP_ta)Atn | XP=XP AW(XE_ta)Atn+o(XP_ ta)AB;,

tn_1’ tn-1?

+0(X]_ ,ta)ABy, HUXPE )V (XE_ ta)(ABE —Aty)

tn-1? tn_1?

Values of X} on the interval (;_1,t;) are obtained by simple linear interpolation of
the points (t;—1, X!'_ ) and (t;, XP).

The value of E f( X}, ) is evaluated by averaging the values f (X{:'j ), where Xt’:’j ,ji=
1,2,...,~ are y simulated trajectories of the approximation of the solution to stochastic
differential equation (1). R

2. Modeling

Now it is simple to use the program (Fig. 1) for visualization of functionals of solutions
to various stochastic differential equations.

As an example, we will choose a simple enough equation for which an exact solu-
tion is known. Function f should also be chosen so, that expectation Ef(X;) could be
explicitly found. Therefore, consider an Ornstein—Ulhenbeck process, satisfying

Xt = —05Xtdt + dBt,



Computer modeling of solutions to stochastic differential equations 333

and function f(x) = z. Knowing, that in this case, EX; = Xoe~%%, we will try different
schemes and values for the number of simulated trajectories - and approximation step h,
and compare these approximations with the exact solution. From the Figs. 2-3 it seems
that both schemes behave almost identically and when ~ equals 10000 appear to be quite
indistinguishable visually from the exact solution.

Fig. 2. A comparison of Euler and Milshtein approximations. Solid line: values of Xoe=2-5t. On the left
approximation step h = 0.01, on the right: A = 0.001. Number of simulated trajectories -y = 100.

o

Fig. 3. A comparison of Euler and Milshtein approximations. Solid line: values of Xoe~%-5¢. Number of
simulated trajectories v = 1000 on the left and v = 10000 on the right. Approximation step h = 0.01.

3. Conclusions

The user of the program has a freedom of choosing all the parameters, including stochas-
tic differential equation itself and modeling weak approximations without even any
knowledge of programing. However, a lot more there needs to be done. For example,
though user (a mathematician) is free to choose all the parameters, he is still bounded to
one-dimensional case. Therefore, two-dimensional case should be added as well. Also,
more approximation schemes would be preferable. And, finally, the case of strong ap-
proximation would also be interesting to study.
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Stochastiniy diferencialiniy lygéiu sprendimy modeliavima;s
kompiuteriu: silpnosios aproksimacijos

A. LenkSas

Daugelyje ekonomikoje ar finansy matematikoje taikomy modeliy yra naudojamos stochastinés
diferencialinés lygtys. Kaip Zinia, retai kada galima rasti jy sprendini, i§reik§tiniu pavidalu arba,
jeigu ir galima, jo i¥rai¥koje yra sudétingos funkcijos, kurias iaip ar taip reikia skaitiskai
aproksimuoti. Todél sililoma kompiuteriné programa, leidZianti matematikui neprogramuojant,
»patogiai* modeliuoti ivairiy stochastiniy diferencialiniy lyggiy silpnasias aproksimacijas, vizualiai
stebéti, kaip, keiCiant jvairius parametrus, kei€iasi aproksimacijos pobddis ir lyginti su tikruoju
sprendiniu, jei tik $is yra Zinomas.



