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1. Introduction

First-order linear temporal logic (FTL, in short) is a very expressive language. Unfor-
tunately, FTL is incomplete, in general, but it becomes complete after adding an w-
type rule. Some fragments of the first-order linear temporal logic are finitary complete
and/or decidable. Here decision procedures for some fragments of FTL (with O(Next)
and O(Always)) are presented.

2. Decision procedure for first-order linear temporal logic with periodic kernels

In order to describe a decision procedure for first-order linear temporal logic with so-
called semi-periodic kernels at first we present a modification of the decision procedure
for FTL fragment with periodic kernels [1, 2, 3, 4].

DEFINITION 1 (kernel formula and C H-sequent, non-repeating and periodic conditions,
induction-free C H-sequent). Let Z = z1,...,Zn (n 2> 1); z; (1 < i < n) is a variable;
b=by,...,bk(b; (1 <j < k)isaconstant). Letm =n —kand Z; = z1,...,ZTm
m < n. Then Z1b = z1,...,Tm, b1, .. ., bk. A formula OB is a kernel formula, if B =
VZ(E(z) D P!(zb)), where P!(Zb) means OP(Z1b). A sequent S is a CH-sequent
if S = £,00 — 0O°A, where £ = @ or consists of atomic formulas, O consists of
kernel formulas; A = :\_71 Elngf" (9), Vi(ks 2 0), 5 = v1,...,Y;, in a separate case,
y; is a constant and Jy; = @. 0° € {@,0}; if 0° = @, then the CH-sequent is an
induction-free. Each C H-sequent must satisfy the following conditions:

Non-repeating conditions: (a) if P(b) € Z_)', then P(¢) € X;

(b) If for every i OVE;(Pi(Z:) D Q1 (Zi1b:)) € O and for every j OVZ;(P;(Z;) D
Q; (ftjll_)j)) € 0 then P; # Pj and Q; # Qj-

Periodic condition:

o = avz, (E(Z1) D El (Zub)),
DV:Ez(El(:iz) D E%(3_32152)),

OVZn(En—1(Zn) D E*(Zn1bn)).



482 R. Pliuskevicius

DEFINITION 2 (operation (+), compatible atomic formula). Let S=%,00 - 0°Abe
a CH-sequent and E(¢) € X. Then (E(€))*t = P(&1d), if OVZ(E(Z) D P(z1d)) €
oQ (where Z = z1,...,Zn (n > 0); 21 = Z1,...,Tm (M < n); b = by,..., bk
(m+k=mn),&=c1,...,Cn; &1 = C1,...,Cm). In this case the atomic formula E(e)
is compatible with the kernel OQ. Otherwise, (E(€))* = @. Let & = Ex, ..., En, then
()t = (B, ... (Bt

DEFINITION 3 (calculi CHG?, CHG"*). A calculus CHGY, is defined by the following
axiom: o

I, E(bo,20) — 37E(, %) V Y, 5B (@)
here and below A V B = B V A for arbitrary formulas A and B; the w-type rule

T — A; T — AL, ;T — Ak ...

r—-oA (= o),

and the the following rule:

(£)*,00 — A1

=005 A (ISIF),

where A—! denotes the formula which is obtained from A, replacing the atomic formula
EF(g) by E*=1(§), moreover, if k; — 1 < 0 then the i-th disjunctive component is
omitted.

Theorem 1 (soundness and w-completeness of CHG?,). Let S be a C H-sequent. Then
VM ES < CHG,FS.

Proof. Analogously as in [1].
Lemma 1. The calculus CHG™* is decidable for induction-free C H-sequents.
Proof. Follows from the shape of the calculus CHG™.

DEFINITION 4 (generalized integrated separation rule: (GIS)). Let S = ¥,00 —- 0A
be a CH-sequent. Let (X)* means the same as in Definition 2. Then the generalized
separation rule (GIS) is as follows:

,00 — 4;(2)T,00 — oA
¥, 00 —-0A

(GIS).

If the left premise of (GIS) is such that CHG* - £, 00 — A, we say that the bottom-
up application of (GIS) is successful; in the opposite case, the bottom-up application of
(GIS) is not successful.

The notation (GIS)(S) = S* means that after a successful bottom-up application of
(GIS) to a sequent S we get the sequent S* as the right premise of (G S).
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Lemma 2. The rule (GIS) is admissible and invertible in C HG?,.
Proof. Analogously as in [2].

DEFINITION 5 (saturated C'H-sequent). Let ¥,00 — OA be a CH-sequent and
E(eb) € X. Let us define the rank of E(b) (in symbols: r(E(eb))): r(E(eb)) = 0, if
YZ(Q(Z) D E'(%1b)) € OR, otherwise, 7(E (b)) = 1.Let S = Ey, ..., E,, 00 — DA,

n

then 7(S) = 3 r(E). Let S be a CH-sequent, then S is a saturated CH-sequent if
r(S) =0.

Lemma3. Let S = X,00 — 0OA be a CH-sequent and v(S) > 0. Then either
CHG. ¥/ Sor CHG, + §* = (£)*,00 — DA and r(S*) = 0, i.e, S* is a sa-
turated C H -sequent.

Proof. Analogously as in [2].

Lemma 4. The problem of constructing a saturated C H-sequent S* from an arbitrary
CH-sequent S is decidable.

Proof. Follows from decidability of the calculus CHG*.

DEFINITION 6 (procedure Re¥(S), parametrical part of Re¥(S)). Let S = £,00 —
0A be a saturated C H-sequent and |0€2| be the number of kernel formulas in OS2, denoted
by p(S). Thus, p(S) = |OS|. Then Re%(S) = S. Let Re*(S) = Sk = Ti,00 — DA,
then ReF+1(S) is defined in the following way:

1. Let us bottom-up apply the rule (GIS) to Sy and Ski, Sk2 be the left and the right
premises of the application of (GIS).

2.If CHG* V Sk, then Re¥+1(S) =L (failure) and the calculation of Re*+1(S) is
stopped.

3.Let CHG" I Sk (it means that the bottom-up application of (GIS) is successful).
Then Re*+1(S) = Sko = (Zk)*,00 — OA; (Zk)? is called a parametrical part of
Rek+1 ( S);

4.1f Re¥*1(S) = Skz and k+1 = |00, then the calculation of Re¥+1(S) is finished.

The notation Re*(S) #1 (k < p(S)) means that all the bottom-up applications of
(GIS) in the calculation of Re*(S) are successful.

Lemma 5. The problem of calculation of Re*(S) is decidable.
Proof. Follows from decidability of the calculus CHG*.

Lemma 6 (loop property). Let S be a saturated C H-sequent and Re*(S) #1 (k <
p(S)). Then Re!(S) = S and (I = p(S)).

Proof. Analogously as in [2].
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DEFINITION 7 (looping C H-sequent). Let S be a saturated C H-sequent and Re!(S) =
S (where | = p(S)). Then S is a looping C H-sequent.

DEFINITION 8 (saturation calculus CH Sat, CH-sequent derivable in CH Sat). The
calculus CH Sat consists of a preliminary step (by means of which a saturated CH-
sequent is generated) and procedure Re*(S). A CH-sequent S is derivable in CH Sat
(in symbols: CH Sat - S) if (1) (GIS)(S) = S*, where S* is a saturated C H-sequent;
ifr(S) = 0,i.e., if S is a saturated C H-sequent, then S = S*; (2) Re!(S*) = S*, where
[ = p(S*); otherwise, CHSat I/ S.

From Lemmas 4 and 5 we gét
Theorem 2. A calculus CH Sat is decidable for the class of C H-sequents.

The saturation calculus CHSat is justified using a so-called invariant calculus
CH IN.

DEFINITION 9 (calculus CHG?). A calculus CHGY is obtained from the calculus
CHG™ by adding

1) the axiom I, 0A — A, DA%,

2) the traditional invertible logical rules (A —), (V =), (= A), (— V),

3) by modifying the axiom of CHG* by adding a multiset A in the succedent of the
axiom.

DEFINITION 10 (invariant calculus CHIN). A invariant calculus CHIN is obtained
from the calculus CHG™ by adding the following rule:

Z‘,E\Q——»I;I—»II;I—-»A(
¥,00 - DA

-—)D)

The rule (— O) satisfies the following conditions:

(1) the conclusion of (— 0O), i.e., the sequent S = ¥,000 — OA is such that
Re!(S) = S, 1 = p(3).

QI = ,\_’;1 A A (OR)?, where T; is the parametrical part of Rek(S), k €
{1,2,...,p}, ;:)—= |of|; £2 is the conjunction of formulas from ;.

Theorem 3. Let S be a CH-sequent. Then CHSat + S <= CHIN - § <=
CHG: - S.

Proof. Analogously as in [3].
From Theorems | and 3 we get

Theorem 4 (soundness and w-completeness of the calculi CH Sat and CHIN). VM =
S <= I+ S where I € {CHSat,CHIN}, S is a CH-sequent.
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3. Decision procedure for first-order linear temporal logic with semi-periodic
kernels

Now we extend the saturation calculus C H Sat for semi-periodic C H-sequents.

DEFINITION 11 (strictly non-periodic kernel, connected kernel, strictly non-periodic
CH-sequent). A kernel Of is strictly non-periodic if any subset of 02 does not sa-
tisfy the periodic condition (see Definition 1). A kernel OS2 is connected if O =
DVfl(El(f:l) D E%(.’fusl)), DVifz(Ez(.’i'z) ) E%(:I_,‘_lzgzl)), Cee DV.’fk(Ek(.’fk) D
Ei 1 (Z16be)), OVZks1(Br41(Zk41) O Eipo(Fike1brs)), ..o OVEn(En(Zn) D
E 1(Z1nbn)), where k > 1. A definition of strictly non-periodic C H-sequent is obtai-
ned from definition of C H-sequents replacing periodic condition by strictly non-periodic
condition.

Lemma7. Let S = X,00 — 0OA be a strictly non-periodic CH-sequent, then
CHG. ¥ S, ie. a strictly non-periodic C H-sequent S = ¥, 0S) — OA is invalid.

Proof. Using invertibility of the rule (— 0O,) instead of the sequent S we can consider
sequent S = £,00 — A (k € w) and instead of the calculus C HG®, we can consider
the finitary calculus C HG*. Lemma is proved using induction on |Z|.

DEFINITION 12 (multi-periodic C H-sequent). A sequent S is a multi-periodic C H-
sequent, if S = X,00,,...,00, — 0°A, where &, 0Q; (1 < i < n), 0° A are the
same as in definition of C H-sequents, see Definition 1, i.e., each kernel 0€; (1 < i < n)
satisfies the periodic condition; if n = 1 then multi-periodic C H-sequents coincides with
C H-sequent.

DEFINITION 13 (semi-periodic C H-sequent). A sequent S is a semi-periodic CH-
sequent if § = X,00,00,,...,00, — 0°A, where £, 0Q; (1 < i < n); 0°, A are
the same as in the case of multi-periodic sequent and O satisfies strictly non-periodic
condition; the kernel OS2 is non-periodic part and O, . . ., OS2, is multi-periodic part of
semi-periodic C H-sequent.

DEFINITION 14 (rank of semi-periodic CH-sequent, saturated semi-periodic CH-
sequent). Let X,00,00,...,0Q, — OA be a semi-periodic C H-sequent and E(eb) €
T. Let us define the rank of E(cb) (in symbols r*(E(eb))): r*(E(cb)) = 0, if
VZ(Q(Z) D E(z1b)) € 0f; (where Of; belongs to multi-periodic part of S), other-

n

wise 7*(E(cb)) = 1. Let S = Ej,..., E,, OQ — DA, then 7*(S) = 2 m*(E:). Let

S be a semi-periodic C H-sequent, then S is a saturated semi-periodic CH -sequent, if
r*(S) =0.

Now we define a preliminary procedure for proposed saturation-based procedure
CH Sat* for semi-periodic C H-sequents. This preliminary procedure will be called the
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preliminary k-th resolvent (in symbols: P* Re*(S)). The aim of P* Re¥(S) is to generate
(from a given semi-periodic C H-sequent S) a saturated semi-periodic C H-sequent S*.

DEFINITION 15 (preliminary k-th resolvent: P*Re*(S)). Let S be a semi-periodic CH-
sequent, then P*Re®(S) = S. If 7*(S) = 0 then calculation of P*Re*(S) is finished.
Let 7*(S) > 0 and P*Re*(S) = Sk = T,0Q — OA, then P*Re**1(S) is defined as
follows: ’

1. Let us bottom-up apply the rule (GIS) to Sk, and Sk1, Sk2 be the left and right
premises of the application of (GIS).

2. If CHG* ¥ Si1, then P*ReF*1(S) = L (false) and calculation of P*Re*+1(S) is
stopped.

3.Let CHG* + S, then P*Re*+1(S) = Sk = (T)F, 00N — DA.

4.1f P*Re**1(S) = Siq and 7*(S) = 0 then calculation of P*Re*+1(S) is finished.

Notation P*Re*(S # L) (k € w) means that all bottom-up applications of (GIS) in
calculation of P*Re*(SS) are successful.
Now we establish a simple upper bound of steps in calculation of P* Re¥(S).

Lemma8. Let S = X,00,00y,...,00, — OA be a semi-periodic C H-sequent,
where O is non-periodic part of S. Let P*Re*(S) # L (k < n + 1, where n = |0Q|).
Then 3i (P*Re*(S) = S*) such thati < n + landr(S*) = 0.

Proof. Ifr(S) =0, then S = S*.Letr(S) > 0. Let0Q = oV¥Z; (E}(Z1) D E}(Z11b1)),
DV522(E;(:52) D Eg(fglzz)), e I:IV:l—:n(E:l(:in) D E}H.l(jnlsn))- Let ¥ = ¥4, %,,
where ¥; consists of atomic formulas which are compatible with strictly non-periodic
kernel O, X consists of atomic formulas which are compatible with multi-periodic
kernel O€Y, . . ., OQ,. Without loss of generality we can assume that £, = Ej(c1), .. .,
E} (&), Ef1(@iy1)s - - Ef (@) (I < n). Since 7(S) > 0,1 > 0. Let us consider two
cases.

1. Of is a connected kernel, ie., Ex = E3; .., Ei = Ef; Eiya # Efq .5
E, # E}, where 0 < @ < | < n. In this case (using that E;y; # Ej,;) calculating
i + 1-time (i < | < n) P*Rek(S) we get that P*Re**1(S) = S* = ¥3, 00 —
0OA, where X% consists of atomic formulas which are compatible with multi-periodic
kernel 09y, . . ., O€Y,. Therefore after i + 1-steps (i < n) we get saturated multi-periodic
sequent. '

2. 0N is not connected kernel. In this case we get that P*Re*(S) = S*, where
r*(S)=0andi=1lori=2. '

Lemma 9. For a semi-periodic C H-sequent S, the problem of generation of the satura-
ted semi-periodic C H-sequent is decidable.

Proof. Follows from decidability of condition of the successful bottom-up application of
(GIS) and Lemma 8.
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Now we define the basic part of CHSat* — the modified k;-th resolvent (in short:
R*ek(S)).
First we define a modified generalized integrated separation rule, a rule (GIS?).

DEFINITION 16 (modified generalized integrated separation rule: (GIS}), successful
application of (GIS})). Let S be a saturated semi-periodic CH-sequent, and S =
2y, 5,00,00, ..., 00, ..., 0f)p, — OA, where O is a non-periodic part of
§; 08, ..., 0, is a periodic part of S; the kernel formulas from o€, 1<ig)are
compatible with parametrical formulas from ;. Then the rule (G S;) has the following
shape:

%, 00; — 4; (Z:)*,00;, - 04
¥1,..., 25,00 > 0A

(GIS}),

where i € {1,...,1}, (Z;)* means the same as in Definition 1, OQ* = 0, 080,
-+, 08 If the left premise of (GIS}), i.e., the sequent S; = ¥;,00; — A such that
CHG" I~ S; we say that bottom-up application of (GIS?) is successful.

Lemma 10. (a) The rule (GIS}) is admissible in CHG®.
(b) The rule (GIS}) is existential invertible in CHG?, i.e., ifCHGLFX,,..., %5,
00 — OA, then Ji such CHG* & £;,00; — Aand CHG - (£;)*,00; — DA.

Proof. Analogously as in [2].

DEFINITION 17 (procedure Ref(S), parametrical part of Re¥(S)). Let S=Y, ... , X,
of, 09y, . ..,00 — 0A be a saturated and semi-periodic C H -sequent, where Of? is a
non-periodic part of S and 0O, ...,00; is a periodic part of S. Then the Rek(9)) is
defined in the following way: Vi (1 < i < I) Re?(S) = S.

Re}(S) is defined by means of the following steps:

l.i:=1.

2. Let us apply the rule (GIS;) to S and Sy, Sa; be the left and the right premises of
(GIS;).

3. If CHG™* I/ Sy, then Re}(S) =1 (failure); if i < I, theni := i + 1, go to Step 2
else stop.

4. Let CHG* F Sy; (it means that bottom-up application of (GIS;) is success-
ful). Then Re}(S) = Sy; = (Z:)+,00 — 0A; (T)* is called a parametrical part
of Re}(S).

Let Ref(S) = SF = T},00; — A, then Re¥+1(S) is defined by means of the
following steps:

1. Let us bottom-up apply the rule (GIS) to Sf and S¥ , S be the left and the right
premises of the application of (GIS).

2.1f CHG" If S, then Ref*!(S) =L (failure) and the calculation of Rek+1(S) is
stopped.
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3.Let CHG* + Sfl (it means that the bottom-up application of (G1S) is successful).
Then Ref+1(S) = SE = (Z7)+,00; — 04; (T7)* will be called a parametrical part
of Ref+1(S).

4.1f Ref+1(S) = Sk and k+1 = |0€], then the calculation of Rek*1(S) is finished.

The notation Re¥(S) #L (k < |0€u|) means that the bottom-up application of
(GIS;) in the calculation of Re}(S) and all the bottom-up applications of (GIS) in
the calculation of Re¥(S) (1 < k < |0S%]) are successful.

Lemma 11. The problem of calculation of Re¥(S) is decidable.
Proof. Follows from decidability of CHG* and definition of Ref (S).

Lemma 12 (loop property). Let S = Xp,..., X, o, 00y, ...,00; — OA be a satu-
rated and semi-periodic C H-sequent. Let Re¥(S) #L1 (k < |0€|). Then Ji such that
Re!(S) = Sf = TF,00; — DA, where g = |0 and S} is the looping C H-sequent.

Proof. Analogously as in [2].

DEFINITION 18 (saturation calculus C H Sat*). The saturation calculus C H Sat* consi-
sts of two decidable procedures:
(1) PRek(S), which generates a saturated and semi-periodic C H-sequent S*, and
(2) Rek(S*), which generates a looping C H-sequent S**.

From Lemmas 9 and 11 we get

Theorem 5. The saturation calculus CH Sat* is decidable for the class of semi-periodic
C H -sequents.

DEFINITION 19 (invariant calculus CHIN*). An invariant calculus CHIN™ is obtai-
ned from the invariant calculus CHIN, replacing parametrical parts of the procedure
Re*(S) by parametrical parts of the procedure Ref(S).

Theorem 6 (soundness and completeness of the calculi CHSat* and CHIN™). Let
S be a semi-periodic CH-sequent. Then VM = S <= I + S where I €
{CHSat*,CHIN*}.

Proof. Analogously as in Theorem 4.
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ISsprendZiamoji procediira kvantorinés tiesinio laiko logikos
fragmentui su pusiau-periodiniais branduoliais

R. Pliugkevicius

Pateikiamas apibendrinimas ankstesniy autoriaus darby apie i¥sprendZiamaja procediira kvan-
torinés tiesinio laiko logikos fragmentui su periodiniais branduoliais. Remiantis $iais rezultatais
pateikiama iSsprendZiamoji procediira minétos logikos fragmentui su pusiau-periodiniais branduo-
liais.



