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1. Introduction

Suppose that individuals come from one of two mutually exclusive and exhaustive popu-
lations €24, 22 with positive prior probabilities 71, g, respectively, where 21—1 m = 1.
Let X € X C RP be random feature variable which is measured on each individual.
Assume that the distribution of X for the individual from ; has the probability density
function (p.d.f.) p;(z; ©;) which belongs to the parametric family of regular densities
F; = {p,-(:c; @,‘), 0;eKC Rm}, (t=1,2).

Further, the dependence of any functions on any distribution parameters will be sup-
pressed in the cases when functions are evaluted at the true values of these parameters
denoted by asterisk *, e.g., pi(z; ©}) = pi(z). A decision is to be made as to witch
population an individual randomly chosen from Q = UZ_,€);, belongs on the basis of an
observed value of X. Let d(-) denote a classification rule (CR) formed for this purpose,
where d(z) = i implies that an individual with feature vector X = z is to be assigned
to the population ; (¢ = 1, 2). In effect, CR divides the feature space X into L mutu-
ally exclusive and exhaustive assignment regions Uy, Uz, where if X falls in U; then the
individual is allocated to Q; (1 = 1, 2).

When prior probabilities {7;} and densities {p;(z)} are known, the probability of
misclassification (PM) P(d(-)) associated with rule d(-) can be expressed as

2
P() =Y / (1 - 8, d(z)) pi(z)dz, M
=1 X

where 6(%, 5) is Kronecker’s delta.
Then Bayes classificaion rule (BCR) dg(z) minimising the PM P(d(-)) is defined as

dp(z) = argmaxm;p;(z). 2)

i=1,

Therefore, Bayes PM Pg is

2
= ; x/ (1 -6(i,dp(x)) pi(z)dx = {d(i.?efp} P(d(-)), 3)



494 K. Dudinskas

where D is the set of all CR d(-) defined before.

In practical applications, the density functions {p;(z)} are seldom completely known.
Often they are only known up to the parameters {6;}, i.e., we can only assert that pi(z)
is an element of the parametric family of density functions F;. Under such conditions, it
is customary to estimate unknown parameters from given data.

Suppose that in order to estimate unknown parametrs 61, 6, there are M individuals
of known origin on witch feature vector X has been recorded. That data is referred to in
pattern recognition literature as training sample (TS). The only case of independent ob-
servations in TS will be considered in this paper. Suppose that TS realized under separate
sampling (SS) design. This sample often is called stratified sample. Then the feature vec-
tors are observed for a sample of M; individuals taken separately from each population
Q@GE=1,2).

The so-called estimative approach to the choice of plug-in classification rule d, (z) is
used. The unkown parametrs 6, , 8, are replaced by appropriate estimates 6;, 6, obtained
from the training data T in the BCR, i.e., ds(z) = d(z, @), where &’ = @, A’2)’.

The actual error rate for the rule d(z, @) is the error rate of classifying a randomly
selected individual with feature X and is designated by

PA@) =Y m / (1 - 66, d(z, &) pi(z)dz. @

i=1 X

It is obvious that P4(a*) = Pg, where a* is the true value of c.

DEFINITION 1. Error regret (ER) for d(z, @) is the difference between the actual error
rate P4(&) and Bayes PM Pg, and the expected error regret (EER) is the expectation
of ER,ie., ‘

EER = Er {Ps(a)} — Pg, (5)
where Er{P4(@)} denotes the expectation with respect to TS distribution.
Let T = (T}, T») be the training sample realized under SS scheme. Here
Til = (Xzfl’ ce 7Xz{;4.-)’

where X;; is the j-th observation from Qi,i=1,2and My + My = M.
Another classical CR usually called likelihood ratio (LR) rule is defined in the fol-
lowing way (see T.W. Anderson, 1984, Chapter 6)

drr(X) = argmax  sup  {pi(X;6;)L1(T1;61)L2(T2; 62)} (6)
i=1,2  {6;,0;€K}

where

M;
Li(Ty;6;) = H pi(Xi,j; 65).

i=1
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The actual error rate and expected error regret for the LR rule is designated by

2
P =Y / (1 - 6 (i, dpr(x))) da, %)
=1 X
EERyp = Er {PLa(T)} - Ps. ®

Unfortunetely the close form expressions of EER and EE R g are difficult to obtain.
In those cases, large sample approximations to and asymptotic expansions are required.

The purpose of this paper is to compare FER in case of pluged ML estimators of
61, 62 with EER r. The asymptotic expansion of the difference between EER and
EER; R in the case of homoscedastic Normal populations is obtained. This is used to
compare the proposed CR.

2. The main result
Suppose that distribution of X for the individual from €Q; is Np(us, I), ie., 0; = p;,

i=1,2
Then ML estimators of p; based on T; is

M;
f; = Z x5/ M;, )]

=1

and ML estimators of u; based on T; and X is
pr = (i *x M; + X)) (M +1), i=1,2. (10)
Assuming without loss of generatity that m; = 72 and using (9), (10) we have
d(z; {f}) = agg_rf}zin(m - @) (z = ),
and
dir (z; {}) = argmin {(z = &) (= — ) Mi/ (M + 1)}
Let e(x) be Heaviside function and let

G (ff {a:}) = (& — i)' (z = f) = (z — fie)'( — f1a),
z; {f}) = 1) (z— @) M1/ (Mi+1) — (z—fi2) (z—fio) M2/ (Ma+1),



496 K. Duéinskas

Theorem. Suppose that CR d(z; {:}) and dpr(z; {jt:}) are used. Then, as M; — oo
and M;/M —7;>0,i=1,2,

EER.r — EER = ¢(-A/2)
x(A*/16—A2p/2—3p% —A?/2—1)(M; —M2)?/(16AMEMZ) + o(M~?), (11)

where
A = (11— pa) (w2 — p2))"?,
e-a:z/2

Proof. It is obvious that (see Ducinskas, 1997)
BERun— BER = Br{ [ (eGla: (1)) - e(Grta B Gz}, (2)
where

Go(z) = pr(z; p1) — p2(z; p2)- (13)

Expanding integral in (12) at true values of parameters u;, u2 and taking the expectations
we obtain (11).

The sign of the expression in the first bracked of (11) indicate the advantage of one
compared rule against another.
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,,Plug-in‘ ir tikétinumo santykio taisykliy palyginimas Klasifikacijoje
K. Ducinskas

Straipsnyje pateiktas vidutinés klasifikavimo klaidos padidéjimo asimptotinis skleidinys ,,plug-
in“ ir tikétinumo santykio taisykléms homoskedastiniy normaliniy populiacijy atvejui.



