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1. Introduction

Let {Z(s;t): s € D € R% t € [0,00]} denote a spatio-temporal random pro-
cess observed at N space-time coordinates (s1;t1),...,(sn;tn). Optimal prediction
(in space and time) of the unobserved parts of the process, based on the observations
Z = (Z(s15t1), ..., (sN;tn)), is often the ultimate goal, but to achieve this goal, a
model is needed for how various parts of the process co-vary in space and time.

In what follows, we assume that the spatio-temporal process Z(s;t) satisfies the re-
gularity condition, var (Z(s;t)) < oo, forall s € D,t > 0. Then we can define the mean
function as

u(s;t) = E(Z(s;t)),
and covariance function as
K(s,r;t,q) = cov (Z(s;t),Z(r;q)), s,r€D, t>0, q>0.

Furthemore, the optimal (i.e., minimum MSPE (see, e.g., Cressie, 1993)) linear pre-
dictor of Z(so;to) is

Z*(s0;t0) = u(so0; to) + Co(so; t0)'T~(Z — p), (1

where & = cov (Z), Co(so;to)’ = cov(Z(so;to)), and p = E(Z), the MSPE is
Co(s0; t0)' £~ 1Co(s0; to). In the rest of this article, we assume that the covariance func-
tion is stationary in space and time, namely

K(S,T';t, q) =C(S—7‘;t-—q), (2)

for a certain function C. This assumption is often made so that the covariance function
can be estimated from data. For any (r1;¢1), . . ., (Tm; gm), any real a1, . .., am, and any
positive integer m, C must satisfy

m m

Z ZaiajC(r,- —T5qi — QJ') 20. 3

i=1 j=1
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To ensure positive definitness, one often specifies the covariance function C to belong
to a parametric family whose members are known to be positive definite. That is, one
assumes that

cov (Z(s;), Z (s + hait + he)) = C° (ki hel), @

where C9 satisfies (3) for all € © € RP.

Our goal in this article is to introduce new parametric families C° for (4) that will
substantially increase the choices a modeler has for valid (i.e., positive-definite) spatio
temporal stationary covariances. One commonly used class (see, e.g., Rodriguez-Iturbe
and Mejia (1974)) consists of separable covariances.

Let C, be a covariance function on R™ and C; be a covariance function on T', then
the product model for C? is :

Cst(hsi he) = Ci(hs)Ci(he). )
It can be re-written in terms of semivariograms as follows:

Vst (hsy he) = [Ce(0)7s(hs) + Ca(0)ve (he) — s (hs)ve(he)] - ©)

The “marginal” semivariograms are

1. ¥st(hs, 0) = C3(0)ys (hs)
and

2. %5¢(0, he) = Cs(0)ye(he).
C:(0) is the sill of () and C(0) is the sill of v, (k).

EXAMPLE 1. Cy¢(hs; ht) = exp(—al|hs|| — blhe]), where 6 = (a, b).

EXAMPLE 2. Given the following variograms:

1A,

s(heib) =1 — —2
7(haib) = 1= 700 176

b>0,
Yi(he;e,d) =1 — e__:" cos <%t) , ¢d>0,

that can be written

LA T [he|
Yst(hs, he) =1 — ﬁme < cos - where 0 = (b, ¢, d).

This function have a space-time Radial Basis function name.
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2. Main Results

The kriging equations for space-time kriging are the same as for purely spatial problems,
the difference is in the use of a space-time covariance in lieu of a purely spatial covari-
ance. In the case of regression model of mean function

u(sit) = E(Z(s;t)) = X35, ™
the optimal prediction is called universal kriging (see, e.g., Cressie (1993)).

Lemma. Optimal linear prediction equation for product covariance function, defined in
(5), is -

Zyx(so,to) = 2T, , B+ 6T [Z - Xs,tﬁ] ) (8)
where

B=(XI.(c7'eCr) X)) XTI (G oY) 2, ©)

§=(C;'®Cy ) (Coo ® Cro), (10)

where Q is the Kronecker product.
C, and Cy is the separable covariance matrix for all observations. Co and Cyy is the
covariance vectors of observations at the predicted point and observed points.

Proof. Expressions (9) and (10) were obtained by using (5) in universal kriging equation.
Then mean squared prediction error for the predictor, given in (8), is of the form

MSPEyg = 6(0) — 2b7 (Cyo(hs) ® Cro(he)) + b7 (C71 ® C;71) b, (11)
where

_ _ -1
b = 1’30;0 (XZ:t(Cs '® C; I)Xs,t)

+(C71 ®C7)(Cuo ® Cuo) (T = X (XTUCT @ CTHXa)) ™)
xXg.(CTr®CT),

and 6(0) = C,(0)C:(0).

3. Example

In this section we apply the separable classes of spatio-temporal stationary covariance
functions to the problem of prediction at the unobserved locations. The spatio-temporal
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data, used in this article, was collected in the Baltic sea, where the number of observations
is taken in regularly time intervals (1994-1998), are considered 8 stations in the coastal
zone. The observation we are working with is solinity in all the considered station.

The spatio-temporal separable covariance function we have after fitting product co-
variance model, defined in (5). The marginal covariance functions are

C'(hs) = 10.447 exp {—0.008] |k}, (12)
and
C?*(hs) = 0.161exp {—0.151|hy|}. (13)
Then the general separable covariance model is
COhyg, ht]0) = 1.677 exp {—0.008||hs|| — 0.151|he} . (14)

Using prediction equation (8) and covariance model (5) we calculated prediction at
an unobserved location. The ratio of MSPE (11) and predicted value of solinity is equal
0.0759/6.211 = 0.0122. This result allows us to evalute procedure of covariance model
fitting as sufficientity adequate to real data.
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Atskiriamos erdvés-laiko kovariacinés funkcijos

K. Dudinskas, E. Lesauskiené

Straipsnyje gautos analitinés iSraiskos UK (universalaus krigingo) ir MSPE (vidutinés kvadrati-
nés prognozés klaidos), kai erdvés-laiko kovariaciné funkcija yra atskiriama, naudojant sandaugos
modeli. Paémus realius duomenis, ivertinti erdvés ir laiko kovariacijy parametrai ir atlikta optimali
prognozé laisvai pasirinktame taSke.



