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In spite of the existance of a great number of distribution analysis methods, the estima-
tion of multivariate distribution density remains a serious problem in practice so far if
dimension is large enough. Even if the parametric expression of density is known, it is
difficult to calculate a good estimate, using the classical methods. We will illustrate the
problem by the Gaussian mixture model, very popular in the classification, which we
have analysed by simulation.

Let X € R be an observed random vector with an unknown distributiondensity f(z)

and X (1), ..., X(n) be a sample of independent copies of X. In the Gaussian mixture
model
4 def
2) =3 pioi(e)  f(z,0), M
i=1

where ¢; is the multivariate normal distribution density and 6 is the vector of all model
parameters.

The maximum likelihood approach could be used to estimate f(x). However it is
obvious that to calculate the estimate

n
OmLE = arg max tI_Il f(X(),9)
constructively is very difficult if the dimension d is large, since in the general case

24+d
+qd+q—1.

) d* +
dimf =gq 5
For example, if d = 6, ¢ = 3 then dim@ = 83 and if d = 10, ¢ = 3 then dim 6§ = 197.
The most popular way to calculate the approximation of 6/ g is the EM algorithm. This
recurrent procedure converges to 677 g only if the initial estimate 8 is close enough to
OMLE.

Obviously, it is much easier to estimate the distribution density f, of univariate pro-
jections X, = 7' X. Since there exists one-to-one correspondence

f‘_’{f‘r, TGRd}
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it is natural to discuss the methods of estlmatlon of f by usmg statistical estimates of f.

So, we suggest calculating a lot of estimates Fraswellas f ( ) thereby instead of esti-
mating f(z) by the complicated classical method. This alternative approach uses simpler
procedures, however it requires a great amount of calculations. The simulation results we
present here were obtained by calculating f; 7 € T, where cardT = 20000. It takes
about 6 hours for doing that by a personal computer. Naturally, constantly improving
computers stimulates the popularity of procedures demanding voluminous calculations,
e.g., methods of bootstrap, jack-knife, data mining.

The usage of the projection approach is not a new idea in the statistical analysis of
multivariate distributions. For instance Friedman (1987) analyzed estimates of the fol-
lowing shape

Flk-1) (k—1)
fla) = y(S))H%_),

where 571 (.) is the density estimate of 7, Y *=1), Here Y (¥) is obtained from X after
k step of structure removal (the sample projections into direction 7 is replaced by corre-
sponding quantiles of Gaussian distribution, k = 1,2, ...). y*) is calculated from z using
the same structure removal transformations.

This is the method of non-parametric estimation. If we use it in case (1), then, after
the first iteration already, there is no possibility to use the parametric structure.

Therefore, there is no wonder that the analysis by simulation showed that density (1)
obtained by the Friedman method yields much greater errors than the estimation methods
using the EM algorithm.

The projection-based method suggested, allow us to use parametric estimates for cal-
culating projection densities.

Let us employ the inversion formula

fla) = / e-Ty(t)dt, () = Beit®,

1
(2m)?
R4
By denoting u = ||t||, 7 = t/||t|| and replacing variables we obtain

f(z) = 2m)d / ds / e~ Ty (ur)ud dt. Q)
7 ||7)|=1 0

The first integral is surface integral over unit sphere.

The distribution density fr of the projection X7 is a mixture of univariate Gaussian
densities f(y) = f(v,6r),y € R.Incase (1) dimf, = 3¢ — 1.

Denote ¥, (u) = Ee™X = 4(u,6,). Then,

P(u)r = ¥, (u) and P(u)r = ¥z (u). 3)
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Having selected the set T of projection directions and estimates {f,, T € T}, basing on
(2) and (3), we obtain the estimate

C

2 _ | —iur'z d—1_-hu
flz) = p— ze;/e Yr(u)u®"le™™ du, 4)
Telo

—hu is used for additional smoothing of estimates. Here

where ¢ = ¢(d). The multiplier e
h is a small quantity, which is selected so that f(w) be non-negative or the domain area
of negative values be small.

Thus, an estimation of multivariate density f is reduced to an estimation of univariate
distribution densities fr and corresponding characteristic functions. Note that we obtain
the estimate f but we do not obtain @ which is necessary for the sample data classification.
To obtain 8 we can apply the same technique for estimating each component ; of the

Gaussian mixture
d
Pj {()DT,]'v T € R’}

The density ¢, ; of projection to the direction 7, corresponding to the component ¢,
is the univariate Gaussian density with mean m,(j) and variance o2(j). The estimates
of these quantities are components of the vector @;. Consequently, @ ; is obtained from
formula (4) replacing v(u, 8;) by exp{iumi, (5) — u252(j)/2}.

At the end we present some simulation results. Unfortunately these results are not
numerous and we cannot draw strict conclusions, though the preliminary results are rather
optimistic. The Table 1 shows the typical errors of these three algorithms:

e the pseudo-estimate f calculated using the multivariate EM algorithm with the

theoretical value of the parameter 6 (i.e., 00 = g);

o the pseudo-estimate ffound using (1), where V7 8, is calculated using EM algo-
rithm with §(9) = 6,

o the estimate fcalcu]ated using (1), where V7 5, is calculated using the software de-
veloped at the Institute of Mathematics and Informatics in Vilnius. The initial value

8 of EMal gorithm is chosen in an automated way. The methods is described in
paper by R. Rudzkis and M. Radavicius (1995).

Table 1
The errors of f The parameters of the mixtures: a) d = 5,9 = 5,n = 500,b)d = 5,9 = 6, n = 500

The multivariate The The
Error EM projection-based projection-based
pseudo-estimate pseudo-estimate estimate
n
1 oo a) 04876 a) 0.7375 a) 0.8089
n a=Z:1’ (@) - f(2)] b) 0.4390 b) 0.5426 b) 0.7314

1 z": ~ a) 1.0291 a) 1.0318 a) 1.2619
n b) 1.1537 b) 0.9412 b) 1.1214
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The first two estimates are pseudo-estimates because in practice the value  is unknown
and thus we cannot select initial value in such way. These pseudo-estimates allow us to
compare the accuracy of the MLE with that of the projection-based method (1), where
the projection parameters are estimated using the maximum likelihood method.

The Monte-Carlo simulation study showed that the projection based distribution den-
sity estimation errors is a little bit large than error of the EM pseudo-estimate. This is the
optimistic result because the EM pseudo-estimate is an approximation of MLE.

The proposed projection-based density estimation algorithm still have some unre-
solved problems. One of them is selection of smoothing bandwidth h, see (4). h can be
selected so that fbe non-negative. If we take h too small, the estimate gives huge errors.
This result requires more detail study.
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Daugiamacio pasiskirstymo tankio vertinimas taikant projektavima
M. Kavaliauskas, R. Rudzkis

Straipsnyje nagrinéjamas daugiamagio pasiskirstymo tankio vertinimo biidas naudojantis vie-
namatiy duomeny projekcijy tankio iverius. Naudojamas pasiskirstykio parametrizavimas. Auto-
riai skiria daug démesio tankio ivertinimui daugiamacio Gauso skirstinio atveju. Aptariami preli-
minariis kompiuterinio modeliavimo rezultatai.



