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1. Introduction

In the last 40 years an increasing amount of data is collected in the form of images. The
analysis of images is related with the reconstruction and interpretation of images influ-
9nced by noises or even by certain (non-linear) transformations [1], [2]. Images include
data collected from agricultural field trials, using remote sensing, microscopy, etc. When
analysing image data, pattern recognition techniques are of great importance. And one of
the most important problems in pattern recognition is the classification problem [3]. For
example, in the recognition of electrocardiograms the classes are disease categories plus
the class of normal subjects. There are a lot of methods of classification, and discriminant
analysis (DA). is one of them. ‘

The notion that data close together, in time and space, are likely to be correlated is
natural. Here could be mentioned problems related to the pollution of atmosphere with
chemical wastes, changing of meteorological conditions, etc. And DA in such areas is
very usefull.

When classes are completely specified, an optimal classification rule in the sense of
minimum classification error is the Bayesian classification rule. In practice, however, the
complete description of classes usually is not possible and for the estimation of proba-
bilistic characteristics of each class the training samples are required. When estimators of
unknown parameters are used, the expressions for the expected error rate are very cum-
bersome even for the simplest procedures of DA. Therefore, asymptotic expansions of
the expected error rate are especially important.

2. Model and problem

Suppose the model of Z (s; t) in population Q; is Z (s;t) = i + & (s;t), where py is
the mean and {¢; (s;t): s € D C R%,t € [0, 00)} is a zero-mean intrinsically stationary
Gaussian random field with stationary (in space and time) spatial-temporal covariance
function defined by a parametric model cov {€: (s;t), & (u; v)} =o(s—u,t—v; )
forall s,u € D,t > 0,v > 0, where 6, € © is am x 1 parameter vector, © being
an open subset of R™, | = 1,2. We restrict our attention to the homoscedastic mod-
els, i.e., 0(0,0;8) = o, for each # € O. Then the spatial-temporal covariance func-
tion in QY is cov {&; (s;t), &1 (u;v)} = (s — u, t — v;61) o2, where c(s — u,t —v; 0;)
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is the spatial-temporal correlation function, ! = 1,2. It is assumed that the function
¢ (s — u,t — v; ;) is positive definite [4]. Assume that, foralls,u € D,¢t > 0,v > 0,
s #u,t#v,cov{e (s;t), ez (u;v)} =0.

Consider the problem of classification of observation Z (r; w) = z (r;w), withr €
Do C D, w > 0, into one of two populations specified above. Under the assumption that
the populations are completely specified and for known prior probabilities of populations
my (r;w), ma (r; w) (my (r; w)+m2 (r; w) = 1), the Bayes classificationrule (BCR) dp (-)
minimizing the probability of misclassification (PMC) is

dp (= (1)) = arg maxx m (ri) pr (= (r5w), ®

where 7 (r; w) is a prior probability and p; (2 (r; w)) is a probability density function of
Q,l=1,2.

Denote by Pp the PMC of BCR, usually called Bayes error rate.

In practical applications the parameters of density function are usually not known.
Then the estimators of unknown parameters can be found from training samples T and
T; taken separately from §2; and §2,, respectively. When estimators of unknown parame-
ters are used, the plug-in version of BCR is obtained. The performance of the plug-in ver-
sion of the BCR when parameters are estimated from training samples with independent
observations or time series observations or observations, which are spatially correlated is
widely investigated by many authors (see, e.g., [5], [6], [7], [8]). In this paper, we shall
consider the performance of the plug-in linear DF when the parameters are estimated
from training samples being realisations of spatial-temporal Gaussian random field. Here
the maximum likelihood estimators of unknown means and common variance assuming
spatial-temporal correlation to be known are considered.

Suppose the spatial-temporal random field is observed at N; spatial-temporal coordi-
nates in region Dy C D, DiN Dy = @, i.e., we observe the training sample T = {T}, T>}
with Ty = {Zn1, ..., Zin, }, where Zio = Z (sl;t%) denotes the o’th observation from
Qa=1,...,N;,l=1,2. Assume that D; is beyond the zone of influence of Dy. Then
Z (r;w) is independent on T'.

Let i; and 52 be the estimators of y; and 2, respectively, based on T.

The plug-in rule dp (z (r; w); i1, fiz, 32) is obtained by replacing the parameters in
(1) with their estimators. Then the corresponding sample linear discriminant function L
is defined as

~

P PN |
L= (z(rw) - 5 (m+7)) (81— i) 5 + 9 (),

where g (r;w) = In %:—:%
DEFINITION 1. The actual error rate for dp (z (r; w) ; fi1, f2, 62) is defined as

P(ﬁla ﬁ?a 32)

2
=S (x5 w) / (1-8(t,d (= (rsw); 1, 22, 8%) Y (2 (x5 w) s i, 0%) ) d2 (1),
=1
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where 6 (-, -) is the Kronecker’s delta.

In the considered case the actual error rate for dg (z (r;w); dy, He, 32) can be rewrit-
ten as :

P (ﬁ1,ﬁ2,32)=§2:7rz (r;w) <I>((—1)l (e = 5 (B +ia)) (B — o) + 59 w))
= 5o\ (A1 - 2)?

where @ (-) is the standard normal distribution function.

DEFINITION 2. The expectation of the actual error rate with respect to the distribution
of T, designated as Er { P (fi1, fi2, 52) }, is called the expected error rate (EER) for the

dp (z (r;w); B, A2, 52).

The goal of this paper is to find an asymptotic expansion of EER associated with
plug-in LDF. Here we present the asymptotic expansion up to the order (N ‘2), where
N = N; + Ns, for the EER of classifying spatially distributed Gaussian observation with
different means and common spatially factorised covariance. Terms of higher order are
omitted from the asymptotic expansion since their contribution is in general negligible
[9]. The ML estimators of means and common variance are used in the plug-in version of
the BCR. A set of calculations for a certain training sample structure and two separable
spatial-temporal correlation models is performed in order to estimate the plug-in BCR
and compare (in sense of EER) considered correlation functions. Separable models are
often chosen for convenience rather than for their ability to fit the data well; at least they
are guaranteed to satisfy positive definitness condition and hence are valid [4].

3. Asymptotic expansion

The expectation vector and covariance matrix of the vectorised training sample 7; defined
T
by TlV = (le, .o .,Zuv,) are

/L[v = 1M iy and E,v = 0201,

respectively, where 1y, is the N;-dimensional vector of ones and Cj is the spatial-
temporal correlation matrix of order N; x Nj, whose (o, 8)’th element is cj.q3 =
c(Sa —Sg, ta —tg;6), 2, =1,...,Ni, 1 = 1,2. Suppose that C; is known and fi;, 52
are the maximum likelihood estimator of y; and o2, respectively, based on T}, | = 1, 2.
LetC[ ! = (c;"ﬁ).

In [10], [11] it is shown, that, for [ = 1, 2, the maximum likelihood estimators of y;
and o2 are

1 &
ﬁl = E- ZCiaZ[a, (2)
I a=1
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and

2 N,
~ 1 o N N
=52 2 & (G~ ) (Zis ~ ), 3)

=1 a,f=1

respectively, where ¢, = 30 51l Pand ¢ = Za =1 P,

MLE under spatial sampling of Gaussian random fields was studied by Mardia, Mar-
shall [12]. They gave the regularity conditions which ensure consistency and asymptotic
normality of parameter estimators. We assume that in our case these conditions also hold.

Put Azl = fi—p, 1 =1,2,A5% =52—0% and let A? (r; w) = & (11 — u2)? bethe
square of Mahalanobls dlstance Let ¢ (+) denote the standard normal distribution density

1) _ pa 2 P 2 a%p 2
function. Let (") = %z, P = ?59’ Pl = Sk s = Stk and P3) =
8% P()

amoer be the partial derivatives of P (ul , H2,0 ) up to second order with respect to the
corresponding parameters evaluated at [i; = pu1, dz = po and 62 = 02, [,k = 1, 2.

Theorem. Suppose -ct— — 0, as N; — oo, I = 1,2. Then the asymptotic expansion of
EER for the dg (z (r; w); A1, Ho, 32) is

Br {P (31,72, 7))} = Zmr“’ o(- 25 oy g8

LM (r;w)w(_A(r;w) g(r;w) )<Z2cz ( Armw) L gy g(r;w))"’

A (r;w) 2 A (r;w) 2 A (r;w)
+-g-j-vir_—;’)) +0(M), @

where M = min(cj, c;, N — 2).

Proof. Without loss of generality we use the convenient canonical formof py = —pg =
M and 02 = 1 (see, e.g., [13]). Expanding P ({1, iz, 52) in Taylor series about the
true values of parameters we have

2
P (i, 12,8%) = Pp + > P{VAR + P33 AG?
=1

2
( S P AmAmL+ P (88°)" + Z”ff:)zAﬁ'Aaz) Hon O
Lk=1 =1

where

S )
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and Oj is the third and higher order terms of Afz; and AG? and their products.
Since P (fi1, fiz, 52) is minimised at y; = (-1)"*! ﬂ%v_l l=1,2and 0?2 = 1,
then

P =pPP 0. (6)

It is easy to show, that E {Afi;} =0, E{AG?} =0,

E{(Am)?)} = = E{ (852)%} = % ©)

E{AfAf} = E {AmAG?) = 0. (8)

1
1

Note, that, for! =1, 2,

@@ T (r;w)’ A(r;w) g(r;w) A (r;w) g (r;w)y2
: Pl’lz - Al(r;w)so(— 2 _A(r;w))(— 2 +(_1)1A(r;w)) ()
and
m (r;w A(r;w Jw
PlZy = S 1) - 2500 _ glEi0)y a0

By substituting estimators (2), (3) in (5), taking the expectation of the right side of (5)
and using (6)-(10) we complete the proof of the theorem.

As the contribution of higher order terms in the presented asymptotic expansion is
in generally negligible [9], for the evaluation of the performance of LDF the asymptotic
expected error regret (AEER)

_ m(r;w) Ar;w)  g(r;w)
ABER = Al(r;w) (_ 2 —A(r;w))

2 . rw \ "
)

is used. Minimum of AEE R could also be used as a criterion for optimal training sample
design.

The numerical comparison of AEER obtained using two different separable spatial-
temporal correlation functions is given in the example below.

4. Example

As an example consider the integer regular 2-dimensional lattice of size 15 x 15. We use
two different designs for training samples from populations £2; and €2,. In the sample T}
there are 8 spatial locations, as in the sample T3 — 11. Suppose, that the observations at
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Table 1
Values of AEER’s withmy =73 = 0.5

A Pg AEERg AEERoy AEERnp

1.50  0.3229 0.0846 0.2126 0.9347
2.00 0.2233 0.0287 0.0721 0.0659
250 0.1468 0.0111 0.0278 0.0109
3.00 0.0918 0.0045 0.0114 0.0043
3.50 0.0546 0.0019 0.0048 0.0015
4.00 0.0308 0.0008 0.0021 0.0005
450 0.0165 0.0003 0.0008 0.0002

each spatial location were taken 3 times, let’s say once every decade. Thus, the sample
sizes are NV; = 24 and N = 33.

A lot of valid spatial and temporal correlation models are readily available (e.g., [2])
and hence they can be combined in product form to give valid spatial-temporal correlation
models. These are so called separable models.

Here we will consider two separable correlation models:

L.c} (h,v) = Zrexp (=&} |h| =7t jv]), &} > 0,78 >0,1=1,2.

2.¢} (h,v) = Lexp (—n'z Ih|® -7} |v|2), Ky >0,m5>0,1=1,2.

In the first case, the correlation model consists of two exponential correlation functions,
as in the second one - of two Ornstein-Uhlenbeck correlation functions. Both of them
are isotropic. Consider k] = 0.1, 7{ = 0.2, k} = 0.3,7} = 0.4, K} = 0.2, 7} = 0.3,
k%3 =0.1and n? = 0.2.

In the Table 1 values of AEER for considered two correlation functions are pre-
sented. Denote by AEERE and AEERoy the values of AEER, when exponential and
Ornstein-Uhlenbeck correlation functions, respectively, are used. The values of AEER
in the case of independent observations are denoted by AEER; N p. Also the values of
Pp are given.

The values of AEER’s approach zero when the distance between classes increases.
As it was expected, the asymptotic expected error regret in the case of independent ob-
servations is the smallest one. The comparision of AEER also shows, that exponential
correlation function is better (gives smaller AEER) than Ornstein—~Uhlenbeck correla-
tion function for the considered neighbourhood.

Since the asymptotic EER for the case of dependent observations is bigger than that
in the case of independence, it is very important take into consideration the spatial de-
pendence factor, when practical problems are solved.
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Erdvés-laiko duomeny diskriminantiné analizé
J. Saltyte-Benth, K. Dutinskas

Sprendziamas vidiniai stacionaraus vienmacio atsitiktinio erdvés-laiko Gauso lauko realizaci-
jos priskyrimo vienai i§ dviejy populiacijy su skirtingais vidurkiais ir faktorizuotomis kovariacijy
matricomis uZdavinys. NeZinomi vidurkiai ir bendra dispersija ivertinami pagal laike ir erdvéje ko-
reliuotas mokymo imtis, tariant, kad erdvés-laiko koreliacijy funkcijos yra Zinomos. Pateikiamas
tikétinos klasifikavimo klaidos pirmos eilés asimptotinis skleidinys. Asimptotinis klaidos prieaugis
{vertinamas ir skaiti$kai, naudojant dvi erdvés-laiko separabilias koreliacijy funkcijas.



