Discrete limit theorems for general Dirichlet polynomials

Renata MACAITIENĖ (ŠU)

e-mail: renata@centras.lt

Let

$$p_n(t) = \sum_{m=1}^{n} a_m e^{i\lambda_m t}$$
 (1)

be a Dirichlet polynomial with complex-valued coefficients a_m and real exponents λ_m . Discrete limit theorems for Dirichlet polynomials were proved in [2], however the explicit form of limit measures in mentioned theorems was obtained only in the case of ordinary Dirichlet polynomials

$$\sum_{m=1}^{n} \frac{a_m}{m^{it}}.$$

The aim of this note is to find the explicit form of the limit measure in the case of general Dirichlet polynomial (1).

Let, for $N \in \mathbb{N}$,

$$\mu_N(\ldots) = \frac{1}{N+1} \# \left\{ 0 \leqslant m \leqslant N \colon \ldots \right\},\,$$

where in place of dots a condition satisfied by m is to be written. We suppose that the exponents λ_m are real algebraic numbers, linearly independent over the field of rational numbers. Moreover, let h>0 be such that $\exp\left\{\frac{2\pi}{h}\right\}$ is a rational number. Denote by $\mathcal{B}(S)$ the class of Borel of the space S, and let \mathbb{C} , as usual, be the complex plane.

Denote by γ the unit circle on \mathbb{C} , and let

$$\Omega_n = \prod_{m=1}^n \gamma_m,$$

where $\gamma_m = \gamma$ for all m = 1, ..., n. Define a function $u: \Omega_n \to \mathbb{C}$ by the formula

$$u(x_1,\ldots,x_n)=\sum_{m=1}^n a_m x_m,\quad (x_1,\ldots,x_n)\in\Omega_n,$$

and let m_{nH} stands for the Haar measure on $(\Omega_n, \mathcal{B}(\Omega_n))$.

706 R. Macaitienė

Theorem 1. The probability measure

$$P_N(A) = \mu_N(p_n(mh) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to the measure $m_{nH}u^{-1}$ as $N \to \infty$.

Now let $s = \sigma + it$ be a complex variable, and let G be a region on \mathbb{C} . Denote by H(G) the space of analytic on G functions equipped with the topology of uniform convergence on compacta. Consider a Dirichlet polynomial

$$q_n(s) = \sum_{m=1}^n a_m e^{-\lambda_m s}.$$

Let a function $v: \Omega_n \to H(G)$ be given by the formula

$$v(x_1,\ldots,x_n)=\sum_{m=1}^n a_m \mathrm{e}^{-\lambda_m s} x_m^{-1}, \quad (x_1,\ldots,x_n)\in\Omega_n.$$

Theorem 2. The probability measure

$$Q_N(A) = \mu_N (q_n(s+imh) \in A), \quad A \in \mathcal{B}(H(G)),$$

converges weakly to the measure $m_{nH}v^{-1}$ as $N \to \infty$.

The main ingredient of the proof of Theorems 1 and 2 is the following lemma.

Lemma 1. The probability measure

$$\mu_N\left(\left(e^{i\lambda_1mh},\ldots,e^{i\lambda_nmh}\right)\in A\right),\quad A\in\mathcal{B}(\Omega_n),$$

converges weakly to the Haar measure m_{nH} as $N \to \infty$.

Proof. The Fourier transform $g_N(k_1, \ldots, k_n)$ of the measure of the lemma is

$$g_N(k_1,\ldots,k_n)=\frac{1}{N+1}\sum_{m=0}^N e^{imh\sum_{l=1}^n k_l \lambda_l}.$$

Since the exponents λ_m are linearly independent over the field of rational numbers, we have that

$$g_N(k_1,\ldots,k_n) = \begin{cases} 1, & (k_1,\ldots,k_n) = (0,\ldots,0), \\ \frac{1}{N+1} \frac{1-\exp\left\{i(N+1)h\sum_{l=1}^n k_l \lambda_l\right\}}{1-\exp\left\{ih\sum_{l=1}^n k_l \lambda_l\right\}}, & (k_1,\ldots,k_n) \neq (0,\ldots,0). \end{cases}$$
(2)

Really, we have that, for $(k_1, \ldots, k_n) \neq (0, \ldots, 0)$,

$$\exp\left\{ih\sum_{l=1}^{n}k_{l}\lambda_{l}\right\} \neq 1. \tag{3}$$

If

$$\exp\left\{ih\sum_{l=1}^{n}k_{l}\lambda_{l}\right\}=1,$$

then

$$h\sum_{l=1}^{n}k_{l}\lambda_{l}=2\pi k,\quad k\in\mathbb{Z},$$

and

$$\sum_{l=1}^{n} k_l \lambda_l = \frac{2\pi k}{h}.$$

However, by the Hermite-Lindemann theorem

$$\exp\left\{\sum_{l=1}^n k_l \lambda_l\right\}$$

is a transcendental number, while by the choice of h we have that

$$\exp\left\{\frac{2\pi k}{h}\right\}$$

is a rational number. Therefore inequality (3) is valid. From (2) we find that

$$\lim_{N\to\infty} g_N(k_1,\ldots,k_n) = \begin{cases} 1, & (k_1,\ldots,k_n) = (0,\ldots,0), \\ 0, & (k_1,\ldots,k_n) \neq (0,\ldots,0). \end{cases}$$

This shows that the measure of the lemma converges weakly to the Haar measure m_{nH} as $N \to \infty$.

Note that the measure of Lemma 1 converges weakly to some limit measure without any restriction on the exponents λ_m . However, for applications we need the Haar measure.

Proof of Theorem 1. By the definition of the function $u(x_1,\ldots,x_n)$ we have

$$p_n(mh) = u\left(e^{i\lambda_1 mh}, \ldots, e^{i\lambda_n mh}\right).$$

708 R. Macaitienė

The function u is continuous. Therefore, in view Theorem 5.1 from [1] and Lemma 1 we obtain that the measure of the theorem converges weakly to the Haar measure $m_{nH}u^{-1}$ as $N \to \infty$.

Proof of Theorem 2. We have that

$$q_n(s+imh) = v\left(e^{i\lambda_1 mh}, \dots, e^{i\lambda_n mh}\right),$$

and the function v is continuous. Therefore, the theorem follows in the same way as Theorem 1.

For applications to general Dirichlet series the following two assertions are useful. Let g(m), |g(m)| = 1, be an arbitrary arithmetic function, and

$$p_n(t,g) = \sum_{m=1}^n a_m g(m) e^{i\lambda_m t},$$

$$q_n(s,g) = \sum_{m=1}^n a_m g(m) e^{-\lambda_m s}.$$

Theorem 3. The probability measures P_N and

$$\widetilde{P}_N(A) = \mu_N(p_n(mh, g) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

both converge weakly to the same limit measure as $N \to \infty$.

Theorem 4. The probability measures Q_N and

$$\widetilde{Q}_N(A) = \mu_N (q_n(s+imh,g) \in A), \quad A \in \mathcal{B}(H(G)),$$

both converge weakly to the same limit measure as $N \to \infty$.

Proof of Theorem 3. Let $\theta_m = \arg g(m)$, m = 1, ..., n. Define a function $u_1: \Omega_n \to \Omega_n$ by the formula

$$u_1(x_1,\ldots,x_n)=\left(x_1\mathrm{e}^{i\theta_1},\ldots,x_n\mathrm{e}^{i\theta_n}\right).$$

By Theorem 1 the probability measures P_N and \widetilde{P}_N converges weakly to the measures $m_{nH}u^{-1}$ and $m_{mH}\tilde{u}^{-1}$, respectively, where

$$\tilde{u}(x_1,\ldots,x_n)=\sum_{m=1}^n a_m g(m)x_m,\quad (x_1,\ldots,x_n)\in\Omega_n.$$

Hence we find

$$\tilde{u}(x_1,\ldots,x_n)=\sum_{m=1}^n a_m\left(x_m e^{i\theta_m}\right)=u\left(u_1(x_1,\ldots,x_n)\right).$$

Therefore

$$m_{nH}\tilde{u}^{-1} = m_{nH} (u(u_1))^{-1} = (m_{nH}u_1^{-1}) u^{-1} = m_{nH}u^{-1},$$

since the Haar measure is invariant with respect to the translation by points in Ω_n . The theorem is proved.

Proof of Theorem 4. Define a function $v_1: \Omega_n \to \Omega_n$ by the formula

$$v_1(x_1,\ldots,x_n)=\left(x_1\mathrm{e}^{-i\theta_1},\ldots,x_n\mathrm{e}^{-i\theta_n}\right).$$

By Theorem 2 the probability measures Q_N and \widetilde{Q}_N converges weakly to the measures $m_{nH}v^{-1}$ and $m_{mH}\widetilde{v}^{-1}$, respectively, where

$$\tilde{v}(x_1,\ldots,x_n) = \sum_{m=1}^n a_m g(m) \mathrm{e}^{-\lambda_m s} x_m^{-1}, \quad (x_1,\ldots,x_n) \in \Omega_n.$$

Similarly as above we find

$$\tilde{v}(x_1,\ldots,x_n) = \sum_{m=1}^n a_m e^{-\lambda_m s} \left(x_m e^{i\theta_m} \right)^{-1} = v \left(v_1(x_1,\ldots,x_n) \right).$$

Hence

$$m_{nH}\tilde{v}^{-1} = m_{nH}v^{-1},$$

and the theorem is proved.

Note that in the last two theorems we applied essentially the properties of the Haar measure. If the limit measure in Lemma 1 is not the Haar measure, then Theorems 3 and 4 are not true.

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New Yourk (1968).
- [2] R. Kašinskaitė, Discrete limit theorems for trigonometric polynomials, Proc. of XL Conf. of Lith. Math. Soc., 3, Vilnius (a spec. suplement of Liet. Matem. Rink.), Vilnius, 44–49 (1999).

Diskrečiosios ribinės teoremos bendriesiems Dirichlet polinomams

R. Macaitienė

Įrodytos diskrečios ribinės teoremos bendriesiems Dirichlet polinomams silpno matų konvergavimo prasme. Nurodytas išreikštinis ribinis matų pavidalas.