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1. Formulation of the result

Among the problems of limit theorems of large deviations play an important part in the
case where separate summands of the sum of random variables satisfy the Cramer or Lin-
nik conditions. Many of the basic ideas and results have been presented fairly completely
in the books [1]-[3].

Let {X,,t = 1,2,...} be a sequence of independent random variables (r.v.) with
distribution density functions px,(z) = (A% /T(a;))z* ! exp{-Az} if z > 0 and
px,(x) =0, < 0,¢ =1,2,... Inshort, X; ~ G(a;, ), where a; > 0,A > 0 and

= [5° x*~le~*dz (the Euler gamma function). It is known that ['(a+1) = al'(a),
(1) = 1,I(1/2) = /7 and I'(n) = (n — 1)!if n € N. The characteristic function
(ch.f) of the rv. X; ~ G(aj, A), is fx,(t) = Ee'Xi = (1—it/N)™™, j =1,2,....
Then, the mean and variance of the r.v. X; are equal to: EX; = aj/A,DX; = a;/A2%,
respectively. Next, let #;, 7 = 1,2, .. ., be a sequence of nonrandom real numbers. Denote

n 1 n 1 n
S,, = ijXj, ESn = XZQJ‘#J', B?‘ = DS,, = an_jﬂ?,

Jj=1

Zy =B (S0~ ES,), Fa)=P(Za<2), pale)=gFal@) ()

o(z) = / p(y)dy, ¢(z) = “"e"p{ B "z }

—00

The targed of our work is to obtain large deviaton theorems and exponential inequali-
ties for the functions P(Z, > z) and pp(z). First we have to get the estimate of the
kth-order cumulant T'x(Z,) of the r.v. Z,, defined by equality (1), where T'x(X): =
;lrad—:r In fx(t)|,_o» k= 1,2,.. .. Here fx(t) = Eexp{itX} is the ch.f. of the r.v. X.

PROPOSITION. For the kth-order cumulants I'x(Z,,) of the r.v. Z,,, the estimate

ICe(Z)] < (k= 1)1A;27%, AL = (max |u) ' ABa, k=34,....
EYA
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Proof LetYj: = p;X;,j=1,2,...,n. Then we have

ij (t)= ij (F"jt) = (1 - i/‘jt/’\)—aj' (©))

On the basis of definition of the kth-order cumulant and by means of mathemati-
cal induction we obtain T'x(Y;) = (k — 1)!q; (pj/)\)k, k = 1,2,... Considering
that random variables Y; are independent, we have that Tx(S,) = Y7 = Te(Y;) =

(k=130 a (uj/)\)k, k = 1,2,.... Taking into account that 'y (S, — ES,) = 0,
Tk(Sn — ESn) =Tk(Sa). k=2,3,..., we get

Tx(Zn) = B7*Tk(Sn) = (k — 1)! (Za_.,uj) St k=23.... @

Hence follows the assertion of the proposition.

Next, let 6;, i = 1,2,.. ., stand for quantities not exceeding a unit in absolute value
and

An =colAl, co=(1/6)(V2/6), Tn=(1/12)(1 —z/An)An. )

Theorem 1. For the distribution function F,(z) of the rv. Z,, defined by equality (1) in
the interval 0 < T < A, the relations of large deviations

1 - Fu(z) ztl
T30 - = exp{Ln(z)} (1 + 01f(x) ) 6)
?(L__-;) = exp{La(@)} (1 + 82(2) 3 . l)

are valid. Here f(z) = 60(1 + 10A,exp{—(1 — z/An)VA})(1 - :1:/A,,)”l and
La(z) =Y fos Ak.nZ¥. The coefficients Ay . (expressed by cumulants of the rv. Z,) are
found by formula (2.9) (3. In particular,

M3n = (1/3)T3(Zn), Aan = (1/24)(Ta(Za) — 3T3(Z)),
As.n = (1/120)(Ts(Zn) — 10T3(Zn)T4(Zn) + 15T3(Z0)), - . -

COROLLARY 1. Forz > 0,z = of l/3) as A,, — oo, where A,, is determined by (5)

lim 1- F"(x)

oo T- 8(z)

. Fu(-x)
=1, nlg{‘)o B(-z) 1. )
COROLLARY 2. For the distribution function F,,(z) of the r.v. Z, defined by equali-
ty (1), the inequality sup, |Fn(z) — ®(z)| < 18/A, holds.



716 L. Saulis

Theorem 2. For the r.v. Z, defined by equality (1)

P{tZ,>z}< ®)

here A,, is determined by (5).

Theorem 3. Ifa;, > 3, k = 1,2,3,4, where 1 < ix < n, then for the distribution
density function p,(x) of the rv. Z,, in the interval 0 < < Ay, for integerl, 1 2> 1, the
equality

-1

pn(z) _ T+ 1y\!
o) - P {Ln(=)} (1 + ;Mu,n(x) + 03‘1(1)( AL )
4
+0227 B (T lna 9™ exo { - 0/9)72} ) ©
k=1
holds. For polynomials M, »(x) the following formula
Myn(2) =Y Kin(2)gu—k,n(z) (10)

k=0

holds, where K, () = Y [Toaci(km!)72( - /\m+2‘nz"‘+2)k'",Ko(:r) = 0 and
Gun(@) = ¥ Hysat(@) [Ty (kon) " (T2 (Zn) /(m + 2D, gon(z) = 1, Hi(z)

are Chebyshev—Hermite polynomials, and the summation is taken over all integer solu-
tions of the equation ky + kg + ... + vk, = v. In a special case,

]\[0',,(.’1‘) = 0, Afl'n(l') = —‘;-F;;(Z,,)l’,
1
My (z) = %(5r§(z,,) — 204(Zn))7® + 52 (3Ta(Zn) = ST3(Z0)), .
We get the exspression of the quantity g(l) from (6.7) (3] that v = 0: q(I) =
(3v/2e/2)!8(1 + 2)243U+DT((31 + 1)/2).
2. Proofs of theorems

Proof of Theorem 3. Since for the kth-order Tk (Z,). k = 2,3, ..., of ther.v. Z,, estimate
(2) holds, for the r.v. £ = Z, the condition (S,) withy = 0and A = A,, A, being
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defined by equality (5) of Lemma (6.1) (1] is satisfied. Basing on this lemma we have to
estimate the integral

R.= / | £z..m (2)|dt, (11)

[t|2Tn

where Zp,(h) = B;(h)(Sn(h) — Mn(R)), Sa(h) = 35, Y;(h) and Yj(h) is con-
jugate Y; := quf, j = 1,2,...,n, r.v. with the density function py,)(z) =
-1

opy, (z)( [, @by, (e)dz)  and Ma(h) = ES.(h), Bi(h) = DSu(h),
fz.(n)(t) = Eexp{itZ,(h)}. Further let oy, (h) = EehYi = [* eh*py (z)dz. Since
f,(t) = Eexp{itY;} = oy, (it), taking into account the exspression of fy; (t) by equal-
ity (3), we obtain gy, (h) = (1 — ujh/X)~%, j = 1,2,...,n. Hence, basing on the the
expression of the density py, (r)(z) of r.v. Y;(h), we get

Fr, ()= (v, (1) ™y, (htit) = (1-v; (R)it) ™™, vi(R)=p;/(A—p;h), (12)

j=1,2,...,n Recaling thatY;, j = 1,2,...,n, are independent random variables we
obtain

fz.m)(t) -—eXP{ M (h )}ny () (¢/Bn(h)). (13)

Note that M,(h) = ES,(h) = 2 *_ a;vj(h), B2(h) = DSy(h) = Z‘—1 o,V 2(h)
where v;(h) is defined by equality (12) From this, basing by equality (12), we derive

|z @®)] = Tj=, (1 + (u}(h)/B?,(h))tz) bos . Next, using equalities (11) we have

R,= /exp{—%iajln( B2(h)t2)}H|fY vy (t/Bn(h)) |dt (14)

[t|12Tn J#ik

It is easy to check that
2 — 3, —(aijAaiy
1 (1+ G272 2) ™ < (L4 (waeml/BE)2) .
k=1

Then [, T2, | fri, (w(t/Ba(h)) ["dt < (xBa(h) v/, (Ryve, () /2 oy Ay > 1.

Hence, making use of the Chauchy—Schwarz inequality we obtain

[ L1 rBalat < nowy( TT et )™ as
—00 k=1

k=1
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Now, recaling the definition of v;(h) by equality (7) we get v;j(h) = (u;/A)(1 +
6(1/8)) and B2(h) = DS,(h) = 3)_, ayv?(h) = A2 Y7 ap2(1 + 6(1/3)) =
B2(1+6(1/3)) for 0 < h < (9maxigjgn [yj|)—1/\. Now we can easily check that
0 < B,jz(h)(uj(h)Tn)2 < 1. Thus, basing on the inequality In(1 + z) > (1/2)z,
0 < x < 1, we have In (1 + (uj(h)Tn/Bn(h))2) > (uan/(2/\Bn))2. Hence,
taking into account equalities (14) and (15), we obtain the estimate of integral R,:
R < 27eAB, (1o, lmi|V/4) ™! exp { — (1/8)T?2}, where T}, is defined by equal-
ity (5).

To prove Theorem 1, we have to use Lemma 2.3 in [3] for the r.v. £ = Z,, for
the kth-order cumulant T'x(Z,), £ = 2,3,..., of which estimate (2) holds. To prove
Theorem 2, we have to make use of Lemma 2.4 in [3] for the r.v. £ = Z,,, for the kth-

order cumulant I'x(Z,),k = 2,3,..., of which estimate (2) is valid, considering that
(k—=1)1<(1/2),k=2,3,....
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Gama-pasiskirsciusiu atsitiktiniy dydZiy sumavimo su svoriais
didZiujuy nuokrypiy teoremos

L. Saulis

Darbe gauti Gama-pasiskirs¢iusiy atsitiktiniu dydZiy sumavimo su svoriais pasiskirstymo ir jo
tankio funkcijy aproksimacijos normaliuoju désniu tikslis jverciai, atsiZvelgiant i asimptotinius
skleidinius didZiyjy nuokrypiy Kramerio zonoje.



