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Let s = o + it be a complex variable, and let, as usual, {(s) denote the Riemann
zeta-function. H. Bohr and B. Jessen observed in the third decade of the last century that
for the investigation of value-distribution of {(s) probabilistic methods could be applied.
They also proved the first limit theorem on the complex plane C. Later many mathe-
maticians continued investigations of Bohr-Jessen. Among them A. Wintner, A. Selberg,
PD.T.A. Elliott, A. Ghosh, B. Bagchi, K. Matsumoto, A. Laurintkas and others. The
most of results in the field can be found in the monograph [2]. The aim of this note is to
prove a limit theorem for {(s) in the space of continuous functions.

Let Co, = C U oo be the Riemann sphere with a metric d(s;, s2) given by the
formulae

2|s1 — s2| 2

o d(s1,00) = ————,
V1t[s1?V/1+[s2f? ( V1i+|si?

s1,82 € C.Let C(R) = C(R, C) denote the space of continuous functions f : R —
Cw equipped with the topology of uniform convergence on compacta.
Let ~y be the unit circle on C, and

Q= H'Yp)
4

where 7, = v for each prime p. With the product topology and pointwise multiplication
I' is a compact topological Abelian group. Therefore there exists the probability Haar
measure my on (T, B(2)), where B(S), stands for the class of Borel sets of the space S.
This gives a probability space (Q2, B(S2), my). Denote by w(p) the projection of w € Q
to the coordinate space <,, and put

wim) = ] w*@)-

pe||m

d(s1,82) = d(00,0) =0,

Moreover, by d, (m) denote the coefficients of the Dirichlet series expansion of {2(s)
in the half-plane o > 1, and define

Britw) =Y h,%m)f—im)

mgT
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Later it will be proved that Sr(t,w) for almost all w € € converges uniformly in t
on compact subsets of R to some function 3(t,w) as T — oo. Therefore, 5(t,w) is a
C(R)-valued random element defined on (2, B(€2), mg). Denote by P its distribution.
Let

vr(...) = %meas {relo,T),..}.

Theorem. Let § > +/2/2 be fixed, iy = (27'loglogT)™Y/2 and o7 = 1/2 +
08(loglog T)3/2(log T)~'. Then under the Riemann hypothesis the probability measure

Pr(A) < vr(¢*m (o7 + it +ir) € A), A€ B(C(R)),
converges weackly to Pg as T — oo.

First we will prove the existance of the random element 5(t, w). Let

Znk(t,w) = Bnii(t,w) — Bn(t,w).

For any compact subset K of R and every € > 0 we define the set A5, (K) by

k(K = {w € Q : sup |Znk(t,w)| = E} ,
teK

and let

8

AL(K) = (N | A% (K)
n>l

=1

Lemma 1. We have my(A%(K)) =0 foreverye >0, K,andk € N.
Proof is similar to that of Lemma 7.1.2 from [2].

Lemma 2. There exists a function 3(t,w) such that for almost all w € Q Br(t,w) —
B(t,w), as T — oo, uniformly in t on compact subsets of R.

Proof. 1t is not difficult to see that

dw,r (M)w(m) B
’BT(t’w) = z (T:LG[T]+it + T1/3 )

mg(T]

uniformly int € Rand w € Q.
oo
Let { K} be a sequence of compact subsets of R suchthat R = |J Kj, K; C Kj1,
: =1

and if K is a compact of R, then K C K;; for some j. Let

pi(f,9) = sup d(f(t).9()), f,9 € O(R).
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Then

_Sgi_Pilhe)
p(f,g)—;z 1+Jp,-(f,g)

is a metric in C(R). However, C(R) is a separable metric space. Therefore
oo oo
my (w € Q: Br(t,w) /) =mH(w EN:we U U U Ai(K,-)).
€>0j=1k=1
Hence by Lemma 1 and (1) we have that
my(w € Q: fr(t,w) £ ) =0.

Consequently, there exists a function 3(t, w) such that for almost all w € € the function
Br(t,w) converges to 3(t,w) uniformly in ¢ on compact subsets of R as T — co.

Lemma 2 shows that 3(t, w) is a C(R)-valued random element defined on the proba-
bility space (2, B(Q?), mp).
Now let

Su(S) = Z d"';—(:n)’

m<u

and concider the weak convergence of the probability measure
Prs.(A) =vp(Sr(or +it +ir) € A), A€ B(C(R)).
We begin with a limit theorem on the torus €. Let
Qr(A) = uT((pi"",p;’", ...)€A), Ae B(Q),
where p,,, stands for the mth prime number.

Lemma 3. The probability measure Qr converges weakly to the Haar measure my; on
(2, B(2)),as T — oo.

Proof is given in [2], Lemma 7.1.1.

Lemma 4. On (C(R), B(C(R))) there exists a probability measure P such that the
measure Pr s, converges weakly to Pas T — oo.

Proof. Let ht : Q — C(R) be given by the formula

he(t,w) = 3 22 T wop) = r(t,w).

meT +it
mgT p=|lm
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Then we have that
Sr(or + it +ir) = hp(t, 07", 5577, .. ). [0))

By Lemma 2 we have that for almost all whr(t,w) — B(t,w) uniformly in ¢ on compact
subsets of R.
Now let

E={weQ:hr(t,wr) - B(t,w) forsome wr — w}.

The space 2 is compact, therefore it is separable. Concequently, £ € B(). We will
prove that my (E) =

We can write wr = w(e™ (D), i (T) ), where 74,(T) — 0,as T — o0, j =
1,2,.. . Repeating the proof of Lemmas 1 and 2 we obtain that

5 Zezliele) T om, ®

mgT psllm

for almost all w € 2 converges to some function h(t, w; 7p,, 7p,, . . .) uniformly in ¢ on
compact subsets of R, uniformly in 7, on compact subsets of R, uniformly in 75, on
compact subsets of R, .... Hence we obtain that the sequence (3) for almost all w € Q
converges to h(t,w;Tp,, Tp,,...) a8 T — oo uniformly in t, 7, , 7p,,... On compact
subsets of R. Therefore from this it follows that

S drr(mieo(m) dyr (M)w(m) I] < (1)
ma1~+zt €
m<T pslIm

for almost all w € §2 converges to h(t,w; 0,0, . . .) uniformly in t on compact subsets of R
as T — ooc. Clealy, h(t,w;0,0,...) = B(t,w). This means that my (E) = 0. Therefore,
by (2), Lemma 3 and Theorem 5.5 from [1] the lemma follows.

Lemma 5. The probability measure Pr, s, converges weakly to the measure Pg as T —
0.

Proof. The assertion of the lemma was obtained in the proof of Lemma 4. Really, the
limit measure in Lemma 4 is my3~1. By the definition of mg3~! this means that

P(A) = mpB~1(A) = mp (81 4) = my(w € Q: B(t,w) € A) = Py(A),
A € B(C(R)).

Now let ny = T%7/2 and e7 = (loglog T)~!.

Lemma 6. The probabilitymeasure Pr.s, . converges weakly to the measure Pgas T —
0.
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Proof. Let
dyr (m)
= 3 e

nr<mgT

Then for any compact subset K of R we have
) T
VT(sup |Z7(t,7)| > sT) € == /supt € K|Zr(t, 'r)|2dr
seK €TT 2

T
BlogT
- =5 [ [1zmGnri,
exT 4/

where L is the contour similar to that in the proof of Lemma 1. Therefore by the
Montgomery-Vaughan theorem

T
vr(sup|Zr(t,7)| > er) = “2E supz € L [ |72z,
sek exT 3

BlogT Z diT (m) _ Blog TT_"T 6(log 1005‘1'23/2_2

2 20r+2u 2
esT N Er
d2_(m
M
nr<mgT

as T' — oo. From this and definition of the metric p we find that
VT(p(ST(O’T + it +47), Spp (o7 + it +i7)) > e) =o(l), as T — oo.

Let

9(8) = ¢ (s) = Sup(s),  K(o) = / lg(o + it) Pu(t) dt,

where
T/2
we)= [ emremrer
log? T

The Riemann hypothesis is used only in the next lemma and Lemma 11.
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Lemma 7. Let1/2 < 01 < 02 £ 9/16and T > Ty. Then

7

K(o2) = B(K(oy)) 7540 (T1-enr) 72
+ B(K(o1)) et emeaton=on) gt T

with positive constants ¢; and ca.

The lemma is Lemma 7.2.2 from [2].
Now let

L(o) = / T Sup (o + i) Tw(t)dt,  J(o) = / ” 1¢(o + it)Pw(t) dt.

—o00 —00

Lemma 8. Let T > To. Then the estimate

1 1
L(§ + m) = BT logT

is valid.
The lemma is a partial case of Lemma 7.2.3. from [2].

Lemma9. Let T > To. Then the estimate

1 1
J<§ + iog_T) = BT logT

is valid.

The lemma is lemma 7.2.4 from [2] with I = log T

Lemma10. Let T > Ty, and o — —1- <or<or+ ——l— Then
logT logT

K(67) = BT exp ( — c4(loglog T)*/2).

Proof. We take o; = -1- + —1— and 03 < or in Lema 7. Clearly,
2 logT

|67 (5) = Sz (s)] = (I ()] + |S,1,‘(s)|<f;>~r)2
<2 +2(|Snr (/7)< max (4,2(5) + 28 (5)/2/*7).

Hence we obtain

K(0) = BT + BJ(o) + BL(0),
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and by Lemas 8 and 9 we have

1 1
K(E + 'l—o—g—T) = BT logT.

This and lemma 7 now yield the estimate of the lemma.
Lemma 11. Let er = (logT)~! and let K be a compact subset of R. Then

vr(sup |g(or +it+ir)| 2 er) =o(1) as T — .
SEK

Proof. By the Chebyshev inequality we have
) T
vr(sup |g(or +it +i7)| > er) < - / sup |g(or + it + iT)'sz.
tekK erT ] teK

Since

g (or + it +i7)

. dz,
z—1t

1
2 . . —-
g(or +it +ir) = —27Ti./1.

where L denotes a simple closed contour enclosing the set 1K, we find that
sup |g(oT + it + iT)|2 = B§! / |g(or + 2 + i1)|2|dz|.
teK L

Here o is the distance of L from i K. For sufficiantly large T, hence we deduce
T . 2T )
/ sup |g(or + it +ir)| “dr = B6 ! /]dz|/ l9(or + Rz +ir)|"dr.
0 teK 0
L
Taking 6 = (log T) ™1, in view of Lemma 10, we have
T 2T

/ sup Ig(o:r +it+ ‘i‘T)|2dT = BlogTsup/ |g(oT + Rz + it)lzdt

0 teK z2€L 4

2T
= BlogT/ lg(ér + it)|2dt = BTexp ( — cs(loglog T)%/?),
0

51

@

1 . .
since o — —1—— £ 61 € or + ——. From this and from (4) we obtain the lemma.

logT logT
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Proof of the Theorem. For any € > 0 we have
( (¢* (o7 + it +47), Spp (o7 + it +47)) > e)
1 [o <]
—Z / sup |g(or + it +47)|1 + 2 sup lg(oT + it +i7)| dr
g £ €K; teK;

=%§(/f+/f)

sup |g(oT +it+iT)|<er SUPiek; lg(or+it+it)|2er
teK;

2 sup l9(or + it + i7)|
=o(1),

*1 + 2 sup lg(or +zt+z1')|

as T — oo by Lemma 11. Therefore the theorem follows from Lemmas 6 and Theo-
rem 4.2 of [1].
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Ribiné teorema Rymano dzeta funkcijai tolydZiy funkcijy erdvéje

I. Belov

Straipsnyje irodoma ribiné¢ teorema tolydZiy funkcijy erdvéje silpno tikimybiniy maty konver-
gavimo prasme Rymano dzeta funkcijai arti kritinés tiesés.



