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Abstract. We aim to find a way to effectively integrate a non-probability (voluntary)
sample under the data framework, where the study variable is also observed in a probability
sample of some statistical survey. The selection bias that arises from voluntary participation
in the survey is corrected by estimating the inclusion into the sample probabilities (propensity
scores) for the units in the non-probability sample. The estimators for the propensity scores
are constructed using a parametric logistic regression model. We consider two modeling
scenarios: with an assumption that the willingness to participate in the voluntary survey
does not depend on the survey variable itself and that such a variable does contribute to
whether the individual responds or not. The maximum likelihood method is applied in both
scenarios to estimate the propensity scores. The estimators of the population mean based on
the estimated propensity scores are linearly combined with the unbiased estimator using the
probability sample data. We compare the constructed estimators in the simulation study,
where we estimate the population proportions using data from the Population and Housing
Census surveys.
Keywords: data integration; not missing at random; propensity score adjustment; population cen-
sus
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Introduction

The expanding access to alternative data sources and the decrease in response rates
of probability surveys contribute to the continuing discussion on the statistical value
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of these new data sources in the recent literature. It includes administrative data, Big
Data and voluntary surveys, and may be described as non-probability samples. A look
at the statistical analysis of non-probability samples and the challenges it might face
was provided in [2], and more recently a critical review on the subject was given in [17].
As the selection mechanism for a unit to be included into a non-probability sample is
unknown, such a sample does not represent the target population. Hence, selection
bias is likely to occur if the estimators are constructed without a proper adjustment
for the sampling process. A popular way to reduce the bias due to the use of a non-
probability sample is to combine it with a probability sample that contains the same
auxiliary variables. This approach can be viewed as data integration. Recently, a
summarized introduction to data integration in survey sampling was provided in [7],
as well as a comprehensive review of data integration for finite population inference
was given in [9].

Probability sampling methods are an accepted approach to surveying finite pop-
ulations in many areas of statistics, including the official statistics [15]. Probability
samples are also being used in population censuses [1]. As it was recently demon-
strated in [3] for the survey of the Lithuanian census, population censuses are also
a potential area for an integration of non-probability and probability samples. State
Data Agency (Statistics Lithuania) has conducted the Population and Housing Cen-
sus 2021 primarily based on administrative data from state registers and information
systems. However, additional information, that is not available in administrative
sources, was collected through the voluntary statistical survey on population by eth-
nicity, native language and religion 2021. The latter data were combined with the
probability sample data.

We consider the sampling framework where the survey sample consists of two
parts: at first, data are collected as the non-probability (voluntary) sample, and the
probability sample is drawn from the rest of the (census) population afterward. This
framework is applied to the statistical survey of the Lithuanian census as described in
Section 2.2. Such a scenario is similar to the one considered in [14, 6] but is different
from that provided in [4], where the study variable is assumed to be unobserved in a
probability sample. Additionally, we suppose that the complete auxiliary information
is available, what is often the case in the official statistics. Then, assuming that the
inclusion of the population unit into the non-probability sample does not depend on
the study variable itself, the estimation procedures used in [4] can be simplified as
in [3]. Differently from [3], we consider the situation when the selection mechanism
is non-ignorable, that is, there is a dependence between the inclusion into the non-
probability sample and the study variable. Modeling under this mechanism is typically
complicated since the incomplete study variable has to be included as the covariate
[16, 11]. However, in our case, the combination of non-probability and probability
samples may be exploited. We estimate the population parameters by adapting the
maximum likelihood approach from [11] to our framework.

A basic setup is presented in Section 1.1. In Section 1.2, a post-stratified gener-
alized regression (calibrated) estimator of the population mean, combining the non-
probability and probability samples, is applied similarly as in [6]. In Section 1.3, the
alternative inverse probability weighted (hereinafter referred to as IPW) estimator,
based on estimated inclusion probabilities (propensity scores) for the non-probability
sample, is presented. The propensity scores are modeled parametrically, assuming
the selection mechanism of the non-probability sample to be non-ignorable. Both the
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On using a non-probability sample for the estimation of population parameters 3

post-stratified and IPW estimators are linearly combined into the composite estima-
tor in Section 1.4. In the simulation study using Lithuanian census data, the proposed
estimators are compared with the one considered in [4, 3], where the stronger assump-
tion is imposed on the propensity score model, see Section 2. In Section 3, the most
relevant findings and some future insights are outlined.

1 Methods

1.1 Sampling framework and auxiliary information

We consider the study variable y that might be continuous or binary with the fixed
values y1, . . . , yN in a finite population U = {1, . . . , N} of size N . Our goal is to esti-
mate the population mean or proportion

µ =
1

N

∑
k∈U

yk. (1)

In order to estimate parameter (1), we assume a sample s of size n to be collected
in two steps.

1. At first, a non-probability sample sA of size nA is obtained from the survey
population U .

2. Then, a sample sB of size nB is drawn according to any probability sampling
design without replacement from the rest of the survey population U\{sA}.

We interpret that the sample s = sA ∪ sB , n = nA + nB , is drawn according to
the probability sampling design p(·) with the inclusion into the sample probabilities
πk = Pp{k ∈ s} > 0, k ∈ U , where we set πk = 1 if k ∈ sA. Hereinafter Pp , Ep ,
and Vp denote the probability, expectation and variance, calculated according to the
randomness induced by p(·), respectively.

We assume that the complete auxiliary information is available, that is, the values
xk of the auxiliary variables x are known for all units k ∈ U . The relationship between
the variables y and x is supposed to be described by a semiparametric outcome
regression model ξ:

Eξ(yk|xk) = m(xk,β) and Vξ(yk|xk) = v2kσ
2, k ∈ U , (2)

where β and σ2 are unknown parameters, vk = v(xk) is a known function of xk, and
m(xk,β) has a known form as well. We take m(xk,β) = x′

kβ, where 1 is the first
component of the vector xk for all k ∈ U , and, therefore, get a linear regression model.
Here Eξ and Vξ denote the expectation and variance with respect to the model ξ.

1.2 Post-stratified generalized regression estimator

Let us consider the combined sample s with the accompanying probability sampling
design p(·). Linear regression model (2) is used to build the generalized regression
estimator [13]

µ̂GR =
1

N

∑
k∈s

dkyk +

(
1

N

∑
k∈U

xk − 1

N

∑
k∈s

dkxk

)′

B̂ (3)

Liet.matem. rink. Proc. LMS, Ser. A, 64:1–11, 2023

https://doi.org/10.15388/LMR.2023.33587
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of (1), where dk = 1/πk denote the sampling weights and

B̂ =

(∑
k∈s

dkxkx
′
k

ck

)−1 ∑
k∈s

dkxkyk
ck

with positive constants ck, for instance, ck = v2k.
Estimator (3) is equivalent to the calibrated estimator [5]

µ̂GR =
1

N

∑
k∈s

wkyk, (4)

where the calibrated weights wk, k ∈ s, are chosen to minimize the distance function∑
k∈s

ck(wk − dk)
2

dk

subject to the calibration equations∑
k∈s

wkxk =
∑
k∈U

xk.

Estimator (3) is approximately design unbiased, that is, Ep(µ̂
GR) ≈ µ. General-

ized regression estimator (3) is also referred to as the post-stratified estimator in [6],
with two post-strata, that is, sA and U\{sA}. According to [6], such estimation could
prove to be efficient with a large non-probability sample.

According to [13], a design-consistent estimator of the variance Vp(µ̂GR) is

ψ̂GR =
1

N2

∑
k∈s

∑
l∈s

(
1− πkπl

πkl

)
(yk − x′

kB̂)(yl − x′
lB̂)

πkπl
, (5)

where πkl = Pp{k, l ∈ s} > 0 are the second-order inclusion into the sample proba-
bilities.

1.3 Inverse probability weighted estimator

Let us consider only the non-probability sample sA. As the selection mechanism for a
unit to be included into the non-probability sample is unknown, such a sample itself
does not represent the target population. Therefore, any naive estimator based on it
is typically biased [8].

Let Rk be the selection indicator for a unit k ∈ U , that is, Rk = 1 if k ∈ sA,
and Rk = 0 otherwise. The inclusion into the sample sA can be described by the
probabilities

πA
k = Eq(Rk |xk, yk) = Pq(Rk = 1 |xk, yk), k ∈ U , (6)

that are analogous to the inclusion into the sample probabilities πk for probability
samples, and are called the propensity scores. Here the subscript q refers to the
propensity score model.

For the estimation of the propensity scores πA
k , k ∈ sA, the following assumptions

are considered.
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A1. The indicator Rk and the study variable yk are not independent given the co-
variates xk.

A2. Every unit has a nonzero propensity score: πA
k > 0 for all k ∈ U .

A3. The indicators Rk and Rl are independent given the respective covariates xk

and xl, k ̸= l.

Due to assumption A1, we have the non-ignorable selection mechanism, which is
similar to the notion of “not missing at random” (hereinafter referred to as NMAR)
used in missing data literature [12].

The propensity scores are often modeled using the parametric logistic regression
model

πA
k = π(x̃k,θ) =

exp(x̃′
kθ)

1 + exp(x̃′
kθ)

, (7)

with the model parameter θ = (θ0, θ1, . . . , θm, θm+1)
′, and x̃k = (1, xk1, . . . , xkm, yk)

′.
Then, the propensity score estimates π̂A

k are obtained from the maximum likelihood
estimator π̂A

k = π(x̃k, θ̂), where θ̂ maximizes the estimated log-likelihood function

l(θ) =
∑
k∈s

wk

(
Rk log

{
π(x̃k,θ)

1− π(x̃k,θ)

}
+ log

{
1− π(x̃k,θ)

})
=

∑
k∈sA

wkx̃
′
kθ −

∑
k∈s

wk log
{
1 + exp(x̃′

kθ)
}
,

analogous to [11]. Here wk, k ∈ s = sA ∪ sB , are the calibrated weights from (4).
The maximum likelihood estimator θ̂ is obtained by applying the Newton–Raphson
or some other iterative procedure to solve the score equations

S(θ) =
∂

∂θ
l(θ) =

∑
k∈s

wk

{
Rk − π(x̃k,θ)

}
x̃k = 0.

The estimated propensity scores π̂A
k = π(x̃k, θ̂), k ∈ sA, are then used to compute

the IPW estimator

µ̂IPW =
1

N̂A

∑
k∈sA

yk
π̂A
k

, where N̂A =
∑
k∈sA

1

π̂A
k

, (8)

of population parameter (1). In order for estimator (8) to efficiently correct the
selection bias, the propensity score model has to be well-specified.

The variance estimator V̂ IPW for (8) may be obtained by using resampling meth-
ods, for example, the bootstrap procedure from [10].

Remark 1. If assumption A1 is altered into a stricter one, that is, the variables Rk and
yk are assumed to be independent given the covariates xk, we have πA

k = Pq(Rk =
1 |xk, yk) = Pq(Rk = 1 |xk) for all k ∈ U . Then, the selection mechanism is called
ignorable. Such a case is analyzed in [4, 3]. The methodology on the derivation of the
respective IPW estimator µ̂IPWi and its asymptotic variance estimator V̂ IPWi under
the ignorable selection mechanism is provided in [3]. The latter study is an adaptation
of [4] methodology to the framework with complete auxiliary information.

Liet.matem. rink. Proc. LMS, Ser. A, 64:1–11, 2023
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6 I. Burakauskaitė and A. Čiginas

1.4 Composite estimators

In order to reduce the variance of estimators, design-based post-stratified estimator
(3) is linearly combined with the model-based IPW estimator under the non-ignorable,
and the ignorable selection mechanisms. That is, two composite estimators

µ̂C = λ̂1µ̂
GR + (1− λ̂1)µ̂

IPW with λ̂1 =
V̂ IPW

ψ̂GR + V̂ IPW
, (9)

and

µ̂Ci = λ̂2µ̂
GR + (1− λ̂2)µ̂

IPWi with λ̂2 =
V̂ IPWi

ψ̂GR + V̂ IPWi
(10)

of population parameter (1) are considered. Similar combinations are investigated in
[14, 3]. Compositions (9) and (10) give more weight to the estimators with a smaller
variance.

The respective variance estimators are

V̂ C = λ̂1ψ̂
GR (11)

and
V̂ Ci = λ̂2ψ̂

GR, (12)

and it is interpreted that the variances of the design-based estimators are reduced by
the factors λ̂1 and λ̂2, respectively.

2 Application to the survey of the Lithuanian census

2.1 Motivation

With a new role as the governing organization for state data and the access to the uni-
fied database of the main state registers and information systems, Statistics Lithuania
carried out the Population and Housing Census 2021 based on administrative data
from these registers and information systems: Residents, Real Estate, Address reg-
isters, and the State Social Insurance Fund Board (SoDra) database, among others.
However, as some variables of interest could not be obtained from any administrative
source, the statistical survey on population by ethnicity, native language and religion
was conducted in 2021. It aimed to evaluate population proportions for such variables
as, for example, the 16 major religions professed in Lithuania. Statistics Lithuania
had the complete data from previous censuses and additional auxiliary information,
which led to the efficient estimation of the proportions of interest [3].

2.2 The union of voluntary and probability samples

The survey sample s ⊂ U was drawn in a few steps.

1. A voluntary online survey was launched at the beginning of 2021 and continued
from the 15th of January to the 28th of February. This led to the collection of
statistical data from approximately 2% of the census population (54 thousand
respondents). It comprised the non-probability sample sA.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR


On using a non-probability sample for the estimation of population parameters 7

2. After the end of the online survey, a sampling frame for probability sampling
was constructed. It excluded such addresses as, for example, institutions, with
at least one individual that already participated in the online survey, with more
than 15 permanent residents, etc. Let sO denote units that were not included
in the sampling frame.

3. The probability sample sB was drawn from the sampling frame U\{sA ∪ sO},
which was divided into H = 113 strata according to the municipality intersected
with the area of residence, that is, urban or rural. The number of addresses
sampled from a particular stratum was proportional to the size of the stratum.
During this step, a total of around 40 thousand addresses were sampled from
the Population Register, what resulted in approximately 6% of the census pop-
ulation interviewed through the telephone survey (171 thousand respondents).

The working sampling design p(·) is characterized by the inclusion probabilities

πk =

{
1, if k ∈ sA ∪ sO,
mkn

′
h/N

′
h, if k ∈ sB ,

where N ′
h denotes the size of the hth stratum, n′h is the number of addresses selected,

and mk is the number of individuals in the corresponding address. The sample part
sO is treated as a separate post-stratum.

The response rate in the probability sample sB was approximately 88%. Missing
values in the sample s = sA ∪ sO ∪ sB were filled in using historical, deductive, and
k-nearest neighbor imputation methods consecutively.

2.3 Simulation study

2.3.1 Framework

A few proportions of interest are of Roman Catholics and Evangelical Reformed Be-
lievers religious groups in 2021. In the simulation study, we focus on these particular
religions.

Table 1. Comparison of proportions of some sociodemographic characteristics.

Voluntary sample Population Difference in %

Ethnicity Pole 0.35 0.07 441
Education higher 0.48 0.20 134
County Vilnius 0.64 0.29 121
Employment employed 0.63 0.45 41
Age group ⩾ 30, < 50 0.37 0.27 37
Marital status married 0.52 0.42 25
Gender male 0.41 0.46 −11

The analysis of the collected voluntary sample using completely observed sociode-
mographic characteristics leads to the finding that certain auxiliary variables can
explain the chance of participating in the voluntary survey. A comparison of propor-
tions of these sociodemographic characteristics between the voluntary sample and the
2021 census population is provided in Table 1. The results here portray the biased
nature of the non-probability sample and suggest that some groups of individuals

Liet.matem. rink. Proc. LMS, Ser. A, 64:1–11, 2023
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8 I. Burakauskaitė and A. Čiginas

are more likely to participate in such online surveys, for instance, people with higher
education, employed, married, etc.

The sociodemographic characteristics provided in Table 1 are then used as covari-
ates xk1, . . . , xk7 in the propensity score model:

πA
k = π(x̃k,θ) =

exp(θ0 + θ1xk1 + . . .+ θ8xk8 + θ9yk)

1 + exp(θ0 + θ1xk1 + . . .+ θ8xk8 + θ9yk)
,

where xk8 and yk, k ∈ s, denote the same binary variable of interest, that is, is the
respondent Roman Catholic or not / Evangelical Reformed Believer or not, in 2011
and 2021 census populations, respectively. The estimator θ̂ of the model parameter
θ is found using the maximum likelihood method from Section 1.3.

In order to accelerate the acquisition of the simulation results, we draw a simple
random sample from the 2011 census population and analyze a population of around
609 thousand instead of around 3.04 million Lithuania residents. The 2021 estimate
of the propensity score model parameter θ is used to generate 1000 Monte Carlo
samples of voluntary participation in the artificial 2011 survey under two scenarios.

1. When the size of the non-probability sample sA in the 2011 census population
is of the same magnitude as in the 2021 census population, – approximately 2%.

2. When the size of the non-probability sample sA in the 2011 census population
is much bigger than that in the 2021 census population, – 20%.

We set the size of the probability sample sB in the 2011 census population to
remain of the same magnitude as in the 2021 census population, – approximately
6%, – and generate 1000 Monte Carlo probability samples in addition to the non-
probability samples.

2.3.2 Main findings

Figures 1 and 2 illustrate the distributions of generalized regression estimator (3), as
well as IPW and composite estimators under the ignorable (MAR assumption), and
the non-ignorable (NMAR assumption) selection mechanisms.

As the box plots of proportions of the Roman Catholics religious group in Fig. 1
and the mean squared error comparison in Table 2 indicate, the most precise re-
sults, compared to the red line that denotes the true proportion, are obtained using
the generalized regression estimator and the composite estimator under the NMAR
assumption. Since the “true” propensity score model represents the non-ignorable
selection mechanism, estimators based on the incorrectly specified model tend to pro-
duce estimates with a significant bias. That is, the IPW estimator under the MAR
assumption underestimates the proportion of interest, and even its combination with
the generalized regression estimator does not reduce the selection bias sufficiently.

Another property observed while comparing the scenarios when the non-probability
sample comprises approximately 2% and 20% of the 2011 census population (Fig. 1)
is that the increase in the non-probability sample size leads to the reduced variance
of estimators, but biases remain.

As of estimating the proportion of the Evangelical Reformed Believers, the findings
are similar. The box plots in Fig. 2 and the mean squared error comparison in Table 3
indicate that the most precise estimators are the generalized regression, as well as IPW

http://www.journals.vu.lt/LMR
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On using a non-probability sample for the estimation of population parameters 9

Fig. 1. Comparison of estimators under scenarios when the non-probability sample sA comprises
∼2% and 20% of the 2011 census population. The red line illustrates the true Roman Catholics

proportion (0.772).

Table 2. Comparison of mean squared errors of estimators µ̂GR, µ̂IPWi, µ̂Ci, µ̂IPW and µ̂C for
the Roman catholics proportion (common multiplier is 10−4), and their variance estimators ψ̂GR,
V̂ IPWi, V̂ Ci, V̂ IPW and V̂ C (common multiplier is 10−9).

sA
µ̂GR µ̂IPWi µ̂Ci µ̂IPW µ̂C ψ̂GR V̂ IPWi V̂ Ci V̂ IPW V̂ C

comprises

∼2% 0.0811 29.0046 1.3279 0.9649 0.1083 0.0028 0.0090 0.0069 3.1661 0.0004
20% 0.0488 17.8551 9.4021 0.3650 0.0801 0.0001 0.0002 0.0170 0.2529 0.0054

and composite estimators under the NMAR assumption. Similarly as it was observed
in Fig. 1, when the propensity score model is incorrectly specified, the IPW estimator
is significantly biased. However, in this case the composite estimator seems to correct
the selection bias better.

Nevertheless, even though the increase in non-probability sample size reduces the
variances of estimators, when the propensity score model is incorrectly specified, both
the IPW and composite estimators remain biased.

3 Conclusions

Making statistical inferences from non-probability samples might be a faster and
cheaper approach, however, it also comes with some obstacles such as the unknown
sample selection mechanism. This uncertainty often leads to the sample selection
bias of the estimators based only on the non-probability sample. To improve the
estimation, we construct the composition of the model-based IPW estimator with
the design-based post-stratified estimator as a way to integrate both voluntary and
probability samples. According to the simulation study, such a combination can
correct the sample selection bias.

Liet.matem. rink. Proc. LMS, Ser. A, 64:1–11, 2023
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10 I. Burakauskaitė and A. Čiginas

Fig. 2. Comparison of estimators under scenarios when the non-probability sample sA comprises
∼2% and 20% of the 2011 census population. The red line illustrates the true Evangelical

Reformed Believers proportion (0.002).

Table 3. Comparison of mean squared errors of estimators µ̂GR, µ̂IPWi, µ̂Ci, µ̂IPW and µ̂C for
the Evangelical Reformed Believers proportion (common multiplier is 10−5) and their variance
estimators ψ̂GR, V̂ IPWi, V̂ Ci, V̂ IPW and V̂ C (common multiplier is 10−14).

sA
µ̂GR µ̂IPWi µ̂Ci µ̂IPW µ̂C ψ̂GR V̂ IPWi V̂ Ci V̂ IPW V̂ C

comprises

∼2% 0.0068 16.5450 0.0286 0.0200 0.0072 0.0753 23.1086 0.0735 3.9709 0.0365
20% 0.0035 2.3593 0.1618 0.0075 0.0037 0.0142 0.2047 4.3639 0.2055 0.0186

However, the selection bias remains significant if the propensity scores are modeled
under incorrect assumptions. As observed in the simulation study, if the propensity
score model is built under the MAR assumption when the actual inclusion into the
non-probability sample mechanism is non-ignorable, the composite estimator barely
corrects the selection bias of the IPW estimator, even with a much larger non-
probability sample.

The simulation study also suggests that, under a well-specified propensity score
model, it is possible to benefit from the voluntary sample, especially if the estimators
based on it are combined with those using the probability sample, and good auxiliary
information is available. Therefore, it might prove useful to collect a larger non-
probability sample in the future by promoting the survey more, as it lets us to reduce
the variances of estimators. Additionally, a much smaller probability sample might
be sufficient to evaluate the parameters of an even more complex propensity score
model under the NMAR assumption.
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REZIUMĖ

Savanoriškosios imties panaudojimas populiacijos parametrams vertinti

I. Burakauskaitė and A. Čiginas
Siekiame rasti būdą efektyviai integruoti netikimybinę (savanoriškąją) imtį atveju, kai tyrimo kinta-
masis stebimas ir tikimybinėje imtyje. Dėl savanoriško dalyvavimo apklausoje atsirandantį parametrų
vertinimo poslinkį koreguojame vertindami netikimybinės imties respondentų tikimybes (polinkius)
dalyvauti apklausoje. Šių tikimybių įvertinius sudarome naudodami parametrinį logistinės regresijos
modelį. Modeliavimą atliekame dviem būdais: esant prielaidai, kad polinkiai dalyvauti apklausoje
nepriklauso nuo tyrimo kintamojo ir kad nuo jo priklauso. Abiem atvejais polinkiai įvertinami naudo-
jant didžiausiojo tikėtinumo metodą. Sudarome tiesines kombinacijas populiacijos vidurkio įvertinių,
pagrįstų polinkiais dalyvauti apklausoje, ir nepaslinkto įvertinio, pagrįsto tikimybine imtimi. Sudary-
tus įvertinius palyginame atlikdami imitacinį tyrimo modeliavimą, vertindami populiacijos propor-
cijas naudojant Gyventojų ir būstų surašymo statistinių tyrimų duomenis.
Raktiniai žodžiai : duomenų integravimas; NMAR; polinkio vertinimas; gyventojų surašymas
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