
Lietuvos matematikos rinkinys
Proc. of the Lithuanian Mathematical Society, Ser. A
Vol. 64, 2023, pages 25–35
https://doi.org/10.15388/LMR.2023.33590

Press

Investigation of an attack on the multi-prime RSA
cryptosystem based on cubic equations

Aleksėjus Michalkovič , Jokūbas Žitkevičius

Kaunas University of Technology, Department of Mathematics and Natural Sciences
Studentų str. 48, LT-51367 Kaunas, Lithuania
E-mail: aleksejus.michalkovic@ktu.lt; jokubas.zitkevicius@ktu.edu

Received July 7, 2023; published online November 20, 2023

Abstract. In this paper we consider a modification of the attack on the classic RSA cryp-
tosystem aimed at factoring the public modulus n, which is a product of three primes.
To improve the performance of the modified attack we introduce additional parameters.
We present the theoretical upper bound on the search range parameter and define a shifting
parameter based on the empirical results. Since these changes make our attack probabilistic,
we investigate the dependence of the success on the values of the newly defined parameters.

Keywords: asymmetric cryptography; multi-prime RSA; integer factorization problem 1■

AMS Subject Classification: 94A60

1 Introduction

The story of asymmetric cryptography began in 1976 when W. Diffie and M. Hellman
published their groundbreaking paper [3]. Later in 1977 R. Rivest, A. Shamir, and
L. Adleman introduced their cryptosystem based on operations in the ring of integers
Zn, where n is a publicly known composite number obtained as a product of two large
primes p and q [6]. This system later became known by the abbreviation RSA and to
this day is used in practice for authorization, e-signature, etc.

Due to the popularity of this cryptosystem, many attacks on it have been pre-
sented. Two of the most popular ones were proposed by M. Wiener and D. Cop-
persmith [1]. These attacks are aimed at such weak spots of RSA as low private
and public exponents respectively. Wiener’s attack proposed in [7] uses continued

1■

©2023 Authors. Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

https://doi.org/10.15388/LMR.2023.33590
https://orcid.org/0000-0002-8661-3021
mailto:aleksejus.michalkovic@ktu.lt; jokubas.zitkevicius@ktu.edu
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

26 A. Michalkovič and J. Žitkevičius

fractions to compute the low private exponent d satisfying the following identity:

d <
1

3
n

1
4 ,

where n = pq is a publicly known modulus. Coppersmith’s attack described in [2]
uses the LLL algorithm to recover the message µ encrypted by RSA using a small
public exponent e. Such bad choices include e = 3 or e = 17, which were popular due
to their binary representations.

These attacks demonstrated some potential weaknesses of RSA, which, unfortu-
nately, result in a total break of the system. Nowadays, due to the gained knowledge,
these weak spots can be avoided. However, such attacks create additional obstacles
in the implementation of RSA.

The most dangerous attacks on RSA are aimed at factorizing the composite mod-
ulus n. As of now, the best attack is the general number field sieve, which is most
effective for composites n > 10110. The current record for the factorization of large
composite is the 829-bit RSA modulus [8]. It is widely recommended that nowadays
the primes p and q have to be at least 1024-bits long to ensure the cryptographic
security of the classic RSA.

Evidently, these primes are enormous. Hence, modifications of the original cryp-
tosystem were proposed. One such modification is the multi-prime RSA scheme which
keeps all the ideas of the original except for the computation of the composite modulus
n, which can now be a product of more than two primes. For simplicity, we limit our-
selves to considering composites of the form n = pqr, where p, q, r are distinct primes.
An advantage of this approach is that these primes can be smaller as compared to
the original idea, yet the composite n remains a hard nut to crack. For example, the
2048-bit composite n can be computed as a product of three 683-bit primes which is
the expected bit length of factors in this case. Another example of the modifications
of RSA is the Okamoto-Uchiyama cryptosystem [5] which uses a public modulus of
the form n = p2q. It is also worthy to mention that using brute-force attack it would
take an infeasible amount of iterations to find the prime factors. On the other hand,
the algorithm we present in this paper greatly relies on the additional information on
the size of factors and is mainly aimed at saving computational time.

In this paper we consider an attack proposed in [4] aimed at factorizing the public
modulus n. The idea of their proposal is based on solving a quadratic equation
x2 − bx+n = 0 with an unknown coefficient b using Vieta’s theorem. We present the
original idea in Section 2 and modify the presented attack to the case of multi-prime
RSA when the public modulus n is a product of three primes in Section 3. In Section
4 we investigate the performance of the modified attack and present several examples.
As usual, conclusions are presented at the end of the paper.

2 The original attack

Suppose that the public modulus n = pq is known and our goal is to find the prime
factors p and q. Consider the quadratic equation x2 − bx + n = 0. Due to Vieta’s
theorem, we have b = x1 + x2, where x1 and x2 are the roots of the considered
equation. Since we are interested in the integer solutions, the possible pairs up to

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

Investigation of an attack on the multi-prime RSA cryptosystem 27

permutations are (p, q) and (1, n), where n = pq. However, we have:

p+ q < n+ 1. (1)

Hence we can define the iterative search of the true value of b by varying it starting
from some initial value b0. The search terminates at the first sensible solution pair
hence minimizing the value of b. However, due to inequality (1) the solution pair
corresponding to the minimal value of b is (p, q) as desired. The described iterative
process works correctly given that the starting value b0 is chosen properly. The explicit
description of this process is presented below:

1. The starting value is obtained by assuming that p ≈ q. Then we have n ≈ p2

and b ≈ 2p. Hence, the starting value is chosen as an even integer closest to
2
√
n;

2. In each iteration the value of the discriminant b2 − 4n using the current value
of b is calculated;

3. If the value of the discriminant is a perfect square, we solve the considered
quadratic equation and terminate the search, i.e. the factorization is found;

4. Otherwise we increase b by 2 and return to Step 2.

Note that the reasoning behind the correctness of the considered attack is Vieta’s
theorem and the minimization of the coefficient b without specifying if the found roots
are actually primes. Due to the structure of n and the inequality (1) they have to be,
given that we are looking for integer values. This may not be the case if n factors into
more than two primes. Theoretically there is nothing that prevents this algorithm
from producing a sensible solution for n = pqr. However, there is no guarantee that
both integer roots x1, x2 are primes. This fact means that the relation between the
considered attack and the Goldbach’s conjecture is non-existent, despite the authors
of [4] claiming otherwise.

Another problem of the presented attack is the fact that for the composite n = pqr,
where p, q, r are equal in bit size, the roots x1 and x2 are far apart, i.e. x2 is twice
as long as x1 in bits. This fact greatly complicates the search for this pair, since the
number of iterations increases drastically.

For these reasons we introduce the modified version of the presented attack aimed
at factoring a composite modulus of the form n = pqr, where p, q and r are three
distinct primes.

3 The modification of the proposed attack

Suppose the public modulus n is known to be a product of three distinct primes p, q
and r, and our goal is to find these factors. Similarly to the concept presented in [4],
we can consider the following cubic equation:

x3 − bx2 + cx− n = 0, (2)

where b, c, d are coefficients determined by *Vieta’s theorem for a cubic equation
whose roots are x1, x2 and x3 in the following way:

b = x1 + x2 + x3;

c = x1x2 + x2x3 + x3x1.

Liet.matem. rink. Proc. LMS, Ser. A, 64:25–35, 2023

https://doi.org/10.15388/LMR.2023.33590

28 A. Michalkovič and J. Žitkevičius

The main objective of the attack is to factor a composite number n by solving a
cubic equation (2) whose coefficients are b = p+ q+ r, c = pq+ qr+ rp and n = pqr.
Then due to Vieta’s formulas the primes p, q, and r are the roots of the considered
cubic equation.

However, compared to the technique presented in [4] we have to vary two coeffi-
cients instead of one. This comes from the fact that the coefficient d is fixed to be
equal to n whereas the other two coefficients have to be varied since the values of the
prime factors of n are unknown.

Our first task is to determine the starting values b0 and c0 of the iterative process
for the coefficients b and c respectively. To find the correct values of b and c, we
have to start the iterative process using b0 ⩽ b and c0 ⩽ c. Therefore, using AM-GM
inequality we get the estimates as:

b = x1 + x2 + x3 ⩾ 3 3
√
x1x2x3 = 3 3

√
n;

c = x1x2 + x2x3 + x3x1 ⩾ 3 3

√
x2
1x

2
2x

2
3 = 3

3
√
n2.

Since both b0 and c0 have to be integers, we round the obtained estimates using the
ceiling function, i.e. b0 = 3

⌈
3
√
n
⌉

and c0 = 3
⌈

3
√
n2

⌉
. Moreover, since b0 and c0 have

to be odd due to Vieta’s theorem, we add 1 to these estimates, if any of them are
even. We also keep bi and ci odd throughout the iterative search. Note that if 3 3

√
n

is already an integer, then n is a perfect cube and we are done since b0 is the desired
prime.

As mentioned above, we expect that each factor of 2048-bit composite n is ap-
proximately 683 bits long. Note, however, that a even the slightest change of bit
length of prime factors may cause giant gaps between them, since 682-bit and 683-bit
primes can differ by as much as 2682. In this paper, we stick with this intuitive guess.
However, we use much smaller composites to perform our experiments.

It is also important to note that theoretically the estimates are bounded above
by the values bmax = n + 2 and cmax = 2n + 1, which corresponds to the solution
x1 = 1, x2 = 1, x3 = n. However, for every fixed value b, reaching the theoretical
maximum of the coefficient c is extremely time-consuming, therefore, we need to take
into account few tendencies throughout the search. The numerical results, however,
showed that in the very first iteration the ratio c0

b0
is nearly equal to the theoretical

ratio c
b .Although, the difference of those ratios might not be positive, we considered

taking absolute value of the difference of their ratios as an indicator of our problem
difficulty. Namely, if the difference is small, then our algorithm finds the factors
relatively quickly because the values that need to be checked are quite limited. On the
other hand, if the difference is large, the algorithm takes much more time. However,
we cannot determine the coefficients b, c and their ratio c

b . Therefore, we only take
i-th iteration ratio ci

bi
into consideration and compare it to c0

b0
by taking the absolute

value of their difference. This way, we introduce the following parameter:

λi =
ci
bi

− 3
√
n ≈ ci

bi
− c0

b0
, (3)

where i is an iteration index.
Let us also denote the actual value of the previously defined difference as:

λ∗ =
c

b
− 3

√
n. (4)

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

Investigation of an attack on the multi-prime RSA cryptosystem 29

Let us assume that within the i-th iteration the following condition holds true:

|λi| ⩽ λ, (5)

where λ > 0 is a parameter preset prior to the start of the search. The purpose
of λ is to prevent the situation when the estimates are relatively far from target
coefficients and bound the search space in order to find any meaningful solutions
of (2). Note, however, that the values of b and c used in (3) are the correct set
of coefficients, i.e. these coefficients are taken from the exact cubic equation (2)
whose roots are the desired primes. Evidently, since the correct values of b and c
are unknown, we have to guess the value of λ. However, this means that our attack
becomes probabilistic, i.e. there is a chance that a factorization is not found since
the right set of coefficients was not considered due to the λ limit. One of the major
problems of our attack is determining a suitable value of λ to keep the right set of
coefficients within range while also keeping the search as fast as possible.

Now we can describe our attack:

1. We compute b0, c0 and insert the estimates into (2);
2. Solve the cubic equation (2) and check if the solutions are integers. If they are,

we have found the desired factors and we terminate the search;
3. If the factor were not found, we increase the value of ci by two, i.e. ci+1 := ci+2

whereas bi+1 := bi;
4. If the new pair of coefficients (bi+1, ci+1) satisfies the inequality (5) we continue

the attack from Step 2;
5. Otherwise, we redefine our pair of parameters (bi+1, ci+1) as follows:

bi+1 := bi + 2, ci+1 := ĉ0, (6)

where ĉ0 = min(ck) ∈ {c0, c1, . . . } is shifted to the minimal ck so that the pair
(bi+1, ci+1) satisfies the inequality (5) and continue the search from Step 2.

To prove the correctness of the presented attack let us note that due to (3) the
desired primes are the roots of the cubic polynomial (2). Moreover, it can be easily
shown that these primes minimize the values of coefficients b, c. However, since the
presented algorithm terminates after finding the first sensible solution (x1, x2, x3),
it has to return a valid factorization of n, since the coefficients b, c are minimized.
The parameter λ ensures that the iterative process never reaches other solutions, e.g.
(1, p, qr), etc. Hence, for the well-chosen parameter λ, we can conclude that the attack
works correctly, i.e. it returns the prime factors of n.

4 Investigation of the proposed attack

Let us explore the dependence λ on the size of the primes and approximate the
maximal value of this parameter required to find the primes with 100% probability
at the cost of computational time.

We start by evaluating the minimum and maximum values of λ∗. Define the follo-
wing target function:

λ∗(p, q, r) =
pq + qr + rp

p+ q + r
− 3

√
pqr. (7)

Liet.matem. rink. Proc. LMS, Ser. A, 64:25–35, 2023

https://doi.org/10.15388/LMR.2023.33590

30 A. Michalkovič and J. Žitkevičius

Fig. 1. The dependence of the parameter λ∗ on the binary logarithm of n.

In this paper, we assume that each prime is m bits long to observe tendencies
between the primes, i.e. we have 2m−1 < p, q, r < 2m. Hence we have the following
symmetrical variable-wise constraints:

2m−1 − p < 0, p− 2m < 0;
2m−1 − q < 0, q − 2m < 0;
2m−1 − r < 0, r − 2m < 0.

Future work in this field may include the investigation of our attack for factors of
non-equal bit lengths.

Using KKT conditions we get that the minimum of the target function (7) with
the above constrains is at point (2m − 1, 2m−1 +1, 2m−1 +1) whereas its maximum is
at point (2m−1 + 1, 2m − 1, 2m − 1). Plugging these points into (7) we can show that
|max(λ∗)| ⩾ |min(λ∗)|. However, to shorten this paper we omit these calculations.
Furthermore, by ignoring the ones in the obtained maximum point we get the even
larger value of λ∗ and, therefore, the upper bound for our guess of the value of λ is:

λ < 2m
(4
5
− 1

3
√
2

)
. (8)

Then assuming that n factors into distinct 8-bit primes the upper bound of λ is
approximately 1.61, whereas for 16-bit factors this bound is 412.84. Clearly, we can
see the exponential growth of this bound and for primes used in practice the upper
bound for λ is roughly 2.53× 10203, which approximates to 2675.7.

However, it is important to note that the upper bound (8) is purely theoretical
and can be used to ensure that the factorization of n can be found given enough time.
In practice this bound may be smaller resulting in faster execution of the considered
attack.

For this reason we generate a relatively large amount of prime triplets (p, q, r),
calculate n = pqr, λ∗ and log2(n) for each case. We sort the values of n in an
ascending order, keeping relevant λ∗ result. The graph presented in Fig. 1 describes
the dependence of λ∗ on the binary logarithm of n.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

Investigation of an attack on the multi-prime RSA cryptosystem 31

Fig. 2. The dependence of the mean and the absolute mean of λ∗ on the bit size of each prime.

Taking every peak of positive values and every peak of negative values separately
in Fig. 1, we can successfully use exponential regression to produce two exponential
functions using those points with more than 98% compatibility. These functions are
plotted as black curves joining the peaks.

We can see from Fig. 1 that λ∗ depends on the distance between factors of n rather
than on n itself, i.e. taking relatively close values of n1 and n2 we get drastically
different λ∗

1 and λ∗
2. Therefore, we cannot determine the value of λ fairly close to the

real value λ∗ knowing only the value of n.
We can also see from the presented graph that the value of λ∗ peaks out quite

rarely and for the most part its absolute value is significantly smaller than both
extrema. For this reason we investigate the arithmetic mean value of λ∗. Also we
present the mean of the absolute values of λ∗, which can help us to make a better
prediction for the value of λ.

Note that in Fig. 2 all of the primes in the factorization of n are equal in their bit
size. We refer to this case as ‘0-case bit-length’. In the future it may be a good idea
to investigate primes of distinct sizes to inspect the effect it has on the execution of
the considered attack.

Let us now present several examples of the considered attack. We keep track of the
following data: the primes p, q, r equal in bit size in all of the examples, the parameter
λ pre-chosen prior to the execution of the attack, the true value λ∗ and the number
of iterations needed to find these primes using the presented algorithm. This data is
summarized in Table 1.

In the first two examples we can see that the guess λ was rather close to the
true value λ∗ and hence relatively small amount of iterations was needed to find the
primes p, q, r. Also, note that despite the fact that the primes in the second example
are larger, they are closer to each other as compared to the first one. For this reason
we can see that the number of iterations differs roughly 6.5 times in favour of the
second example.

Liet.matem. rink. Proc. LMS, Ser. A, 64:25–35, 2023

https://doi.org/10.15388/LMR.2023.33590

32 A. Michalkovič and J. Žitkevičius

Table 1. Examples of successful factorization of public
modulus n = pqr.

p q r λ λ∗ Iterations

547 839 983 2 1,884 158912
31391 31957 32297 0,1 0.005 24163
26107 26573 27799 5 −0.079 4997711
31847 31873 32341 5 −0.003 285038

In the latter two examples we can see that λ was chosen poorly, i.e. the true value
λ∗ significantly differs from our guess. In the third example we can see the dire affect
this poor choice had on the iteration number. Comparing second and third examples
we see that despite the fact that in both cases the values of λ∗ were close to zero and
to each other in absolute value the number of iterations differs roughly 207 times in
favour of the second example.

Notably in the fourth example despite the poor choice of λ we can see that the
number of iterations was quite reasonable. However, this comes from the fact that
the starting values of the coefficients b0 and c0 were relatively close to true values
of b and c respectively. A better choice of λ would greatly decrease the number of
iterations as demonstrated in the second example.

To increase the performance of the algorithm, we also modify Step 5 by introducing
another parameter δ > 0. The purpose of this modification is to optimize the iterative
process by diminishing the search space of the coefficients.

To determine the value of δ, we generated 100′000 prime triplets (p, q, r), where
the bit size of each prime is m and considered the ratio c−c0

2m for each triplet. Note
that for this investigation we are interested only the first iteration. Below in Table 2
we present the dependence of the average of the considered ratio on the bit length of
the factors.

Table 2. The dependence of the average space between c and c0 on the
primes bit length.

m 8 10 12 14 16 18

c−c0
2m

4.450 16.526 65.210 269.529 1082.491 4182.155

We can see that the considered ratio on average is proportional to the size of
primes, i.e. we can assume that within every increase of bit for each prime, the
considered ratio increases 2 times. Using the presented Table 2, let us define δ as a
function of the prime bit length m in the following way:

δ = δ0 · 4.450 · 2m · 2m−8 = δ0 · 4.450 · 22m−8, (9)

where 0 < δ0 < 1 is a shifting parameter. For more clarity, assume that the original
search space of coefficients b, c is:

S = {(bi, cj) | b0 ⩽ bi ⩽ bmax, c0 ⩽ cj ⩽ cmax}.

The parameter δ reduces this search space to S′ as follows:

S′ = {(bi, cj) | b0 ⩽ bi ⩽ bmax, c0 + δ ⩽ cj ⩽ cmax}.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

Investigation of an attack on the multi-prime RSA cryptosystem 33

Evidently, considering the search space S′, fewer iterations are performed which
accelerates the primes search. On the downside, we are no longer able guarantee that
these primes are found if the value of δ0 is too large. We can only determine the
probability of that outcome given that the parameter λ defines a large enough range
of search, e.g. it was chosen using the upper bound (8)

To estimate the probability of success we generated relatively large number of
prime triplets (p, q, r) of equal bit length m. Then we vary the value of δ0 and calculate
δ using its definition (9). In Table 3 we present the probability of successfully restoring
m-bit factors of n when the search space is S′.

Table 3. The probability of a successful attack
while choosing δ0 for each of primes p, q, r in bit

size of m.

m
δ0 0.1 0.3 0.5

10 0.7811 0.6054 0.5127
14 0.7726 0.6032 0.5105
18 0.7662 0.6147 0.5162

The presented Table 3 depicts the approximate tendency of the attack success
and we can see a notable difference between reducing the search space by 10% of
iterations as compared to 50% reduction which grants us approximately 77% and
51% probability of success respectively.

Note also that in practice the upper bound of λ is enormous and hence the total
scan of the search space S is infeasible. Even if we greatly reduce this search space, it
still remains too large for the total scan. On the other hand, to achieve searchable S′

the value of δ0 has to be close to 1. However, in this case the probability of successful
attack is essentially 0.

To end this section we present several examples which demonstrate the dependence
of the number of iterations on the parameter δ0. The data is summarized in Table 4.

Table 4. Examples of successful factorization of public
modulus n = pqr with reduced search space.

p q r λ λ∗ δ0 Iterations

563 761 967 3 0.367 0.0 178845
563 761 967 3 0.367 0.3 163611
563 761 967 3 0.367 0.5 148015

563 761 967 0.5 0.367 0.0 31228
563 761 967 0.5 0.367 0.3 28016
563 761 967 0.5 0.367 0.5 25168

2459 2957 3467 5 0,241 0.0 1835775
2459 2957 3467 5 0,241 0.3 1278174
2459 2957 3467 5 0,241 0.5 838678

2459 2957 3467 0.5 0,241 0.0 191932
2459 2957 3467 0.5 0,241 0.3 129286
2459 2957 3467 0.5 0,241 0.5 85411

We can see from the presented table that the number of iterations significantly
decreases when δ0 increases. Moreover, for the 36-bit composite n (the larger of the

Liet.matem. rink. Proc. LMS, Ser. A, 64:25–35, 2023

https://doi.org/10.15388/LMR.2023.33590

34 A. Michalkovič and J. Žitkevičius

considered composites) it seems that the true values of the coefficient c is somewhat
close to the lower bound c0+δ. For this reason the change of the number of iterations
between the values of δ0 = 0.3 and δ0 = 0.5 is more noticeable than in the other case.
Note that, if we are using brute-force attack, finding the minimum prime p takes
p−1
2 iterations, since we are searching for only odd numbers, whereas to find the other

factor we need
3
√
n−p
2 iterations at most. Using the standard length of primes, i.e. each

of them is 683 bit, the brute-force method needs at most ⌊p−1
2 ⌋+⌊

3
√
n−p
2 ⌋ = ⌊

3
√
n−1
2 ⌋ =

3
√
n
2 −1 = 2682−1 iterations. In respect to this result, the modified algorithm of RSA

becomes probabilistic, depending on chosen parameters λ, δ, however, the choice of the
parameters becomes the reason of varying number of iterations (not the bit length
of primes p, q, r), therefore, this algorithm becomes much more valuable time-wise
comparing to brute-force attack when the bit length of factors increases drastically.

5 Conclusions

In this paper we considered a modification of a previously proposed attack on the
classic version of RSA cryptosystem. Comparing these attacks we can see that both
of them rely on Vieta’s formulas for second and third degree polynomials respectively.
Moreover, we have demonstrated that the original version does not have any relation
to the Goldbach’s conjecture.

However, since in our case two unknown coefficients have to be varied we intro-
duced additional parameters λ∗ and δ defined by expressions (7) and (9) respectively.
Using these parameters we improved the performance of the modified attack at the
cost of turning it probabilistic.

Empirically we have shown that maximal value of λ∗ increases exponentially as
the bit length of the prime factors grows. We have also evaluated the theoretical
upper bound for the maximal value of λ∗. The presented results have shown that
for 2048-bit composite n this bound is roughly 2676 which is far too large to perform
an effective iterative search. Moreover, the exponential growth also applies to the
negative values of λ∗.

We have also considered the average value of λ∗. Comparing graphs presented in
Figs. 2 and 1 we can see that the average growth of λ∗ is significantly slower than
its maximal value. Hence we can reduce the range parameter λ while the success of
attack remains reasonably high.

Since the peaks of negative values of λ∗ are always less than the peaks of positive
values, we can introduce a shifting parameter δ. This way we diminish the searching
space and hence reduce the number of iterations. However, the probability of success
noticeably decreases.

References

[1] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Not. Am. Math. Soc.,
46(2):203–213, 1999.

[2] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vul-
nerabilities. J. Cryptol., 10(4):233–260, 1997.

http://www.journals.vu.lt/LMR

http://www.journals.vu.lt/LMR

Investigation of an attack on the multi-prime RSA cryptosystem 35

[3] W. Diffie, M. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976. https://doi.org/10.1109/TIT.1976.1055638.

[4] C. Liu, C.-C. Chang, Z.-P. Wu, S.-L. Ye. A study of relationship between RSA public key
cryptosystem and Goldbach’s conjecture properties. Int. J. Netw. Secur., 17(4):445–453,
2015.

[5] T. Okamoto, U. Shigenori. A new public-key cryptosystem as secure as factoring. In
Advances in Cryptology—EUROCRYPT’98: International Conference on the Theory and
Application of Cryptographic Techniques Espoo, Proceedings 17, pp. 308–318, Finland,
May 31–June 4, 1998. Springer.

[6] R.L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[7] M.J. Wiener. Cryptanalysis of short rsa secret exponents. IEEE Trans. Inf. Theory,
36(3):553–558, 1990. https://doi.org/10.1109/18.54902.

[8] P. Zimmermann. Factorization of RSA-250. Technical report, INRIA, Nancy, France, 02
2020.

REZIUMĖ

Trijų pirminių RSA kriptosistemos atakos, paremtos kubinėmis lygtimis,
tyrimas

A. Michalkovič and J. Žitkevičius
Šiame darbe nagrinėjame atakos prieš klasikinę RSA kriptosistemą modifikaciją, kuria siekiama
išskaidyti pirminiais daugikliais viešąjį modulį n, kuris yra trijų pirminių skaičių sandauga. Norėdami
pagerinti modifikuotos atakos greitaveiką mes įvedame papildomus parametrus. Pateikiame teorinę
viršutinę paieškos diapazono parametro ribą ir apibrėžiame poslinkio parametrą pagal empirinius
rezultatus. Kadangi šie pakeitimai daro mūsų ataką tikimybinę, mes tiriame atakos sėkmės priklau-
somybę nuo naujai apibrėžtų parametrų.
Raktiniai žodžiai : asimetrinė kriptografija; RSA kriptosistema; skaidymo pirminiais daugikliais už-
davinys

Liet.matem. rink. Proc. LMS, Ser. A, 64:25–35, 2023

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/18.54902
https://doi.org/10.15388/LMR.2023.33590

	Introduction
	The original attack
	The modification of the proposed attack
	Investigation of the proposed attack
	Conclusions
	References

