Presheaves on midsymmetrical quantaloids

Remigijus Petras GYLYS (MII)

1. Introduction

In previous paper [2] we studied presheaves and sheaves on an arbitrary quantaloid (category enriched in the category of complete sup-lattices subject to certain laws), where we had choosed the C.J. Mulvey and M. Nawaz theory [3] as a guideline for futher generalizations taking our inspiration in the matrix approach of G. Van den Bossche [1]. In this note we continue those investigations restricting our interest to a special subclass of quantaloids, "midsymmetrical" quantaloids. In this setting it is possible to express the structural matrix of the underlying Q-set of a regular and separated presheaf in terms of its "restriction" and "diagonal" (Theorem 3.8). We are going to detail it in a subsequent paper.

2. Quantaloids and matrices

We first review some of the basic notions.

DEFINITION 2.1. A quantaloid is a locally small category Q such that:

- (i) for all u,v objects in Q, the hom-set Q(u,v) is a complete lattice,
- (ii) composition of morphisms of Q (in this paper denoted by &) preserves arbitrary joins in both variables:

$$p\&\bigvee_{i}q_{i}=\bigvee_{i}p\&q_{i}$$
 and $(\bigvee_{i}p_{i})\&q=\bigvee_{i}p_{i}\&q$

for all morphisms p,q of Q and for all families (p_i) , (q_i) of morphisms of Q (forming respective composable pairs). A quantaloid Q will be called *midsymmetrical* whenever it satisfies

(iii)
$$p\&(q\&r)\&p' = p\&(r\&q)\&p'$$
 for all $p \in Q(u, v), q, r \in Q(v, v), p' \in Q(v, v')$.

Note that we use the unconventional left-to-right direction for composition of morphisms. An important example of a one-object midsymmetrical quantaloid is given by the lattice of all closed left-sided (or right-sided) ideals of a non-commutative C^* -algebra.

From now Q will be an arbitrary midsymmetrical quantaloid having a small set of objects. Let Q_0 denote this set and Q_1 the set of morphisms of Q. Let Set/Q_0 denotes the category whose objects are families X of sets X_u indexed by $u \in Q_0$. An element $x \in X_u$ will be called an element over u and we shall sometimes write d(x) for u. Morphisms in Set/Q_0 are families of maps $f_u: X_u \to Y_u$.

DEFINITION 2.2. Let Q be a quantaloid and X and Y be two objects of Set/Q_0 . A matrix M from X to Y assigns to each pair x, y of $X \times Y$ an element of Q_1 :

$$m_{x,y}:d(x)\to d(y).$$

Matrices compose by "matrix multiplication": for $M:X\to Y$, and $N:Y\to Z$, the composite $M\&N=L:X\to Z$ has its general element given by

$$l_{x,z} = \bigvee_{y \in Y} m_{x,y} \& n_{y,z}.$$

It is clear that this composition is associative. If Q has units, then the matrix I defined by

$$i_{x,x}=id_{d(x)}$$
 (unit in $Q(d(x),d(x))$),
 $i_{x,x'}=\perp_{d(x),d(x')}$ if $x\neq x'$ (bottom element in $Q(d(x),d(x'))$),

is the unit matrix on X. Matrices from X to Y form a partially ordered set for the pointwise partial order. Sets over Q_0 with matrices as 1-morphisms and 2-morphisms given by partial order determine a bicategory.

3. Q-sets and presheaves on a (midsymmetrical) quantaloid Q

The notions of a (general) Q-set and of a presheaf, which will be given in this section, are taken from [1] and [2].

DEFINITION 3.1. Let Q be a quantaloid. A Q-set is an object X of $Sets/Q_0$ provided with a matrix $A: X \to X$ satisfying the following:

Idempotency: A&A = A.

An element $x \in X$ of a Q-set (X, A) will said to be strict provided that it satisfies

Strictness: $a_{x,x}\&a_{x,x'}=a_{x,x'}$ and $a_{x',x}\&a_{x,x}=a_{x',x}$ for all $x'\in X$ and a Q-set (X,A) itself will be called strict whenever every element $x\in X$ is strict.

A Q-set (X, A) will be called regular whenever it satisfies

Regularity: $a_{x,x'} = a_{x,x'} \& a_{x',x} \& a_{x,x'}$ for all $x, x' \in X$.

A Q-set (X, A) will be called separated whenever it satisfies

Separation: if $a_{x,x''} = a_{x',x''}$ and $a_{x'',x} = a_{x'',x'}$ for all $x'' \in X$ (which is just the condition that $a_{x,x} = a_{x',x'} = a_{x,x'} = a_{x',x}$ when x and x' are strict), then x = x'.

We shall usually write a_x for $a_{x,x}$. Note that regular Q-sets are strict. An example of a regular Q-set is given in Theorem 3.4 (by (1)).

DEFINITION 3.2. Given a strict Q-set (X,A), the restrictable triplet $(p,x,p^\#)$ (of $Q_1 \times X \times Q_1$) is the element of $Q_1 \times X \times Q_1$ over $d(p,x,p^\#) = dom(p)$ such that $dom(p) = cod(p^\#)$, $cod(p) = dom(p^\#) = d(x)$

$$a_x \& p^\# \& p \& a_x \leqslant a_x$$
, $p \& a_x \leqslant p \& p^\# \& p \& a_x$, and $a_x \& p^\# \leqslant a_x \& p^\# \& p \& p^\#$,

where the last two inequalities are actually equalities owing to the first inequality.

DEFINITION 3.3. By a presheaf on Q will be meant a Q-set (X, A) together with

Restriction: a partial mapping $\uparrow \uparrow$: $Q_1 \times X \times Q_1 \to X$ (more precisely, a "matrix" $\uparrow \uparrow = (\uparrow \uparrow_{u,v})_{v \in Q_0}^{u \in Q_0}$ of partial mappings $\uparrow \uparrow_{u,v}$: $Q(u,v) \times X_v \times Q(v,u) \to X_u$) from the restrictable triplets $(p,x,p^\#) \in Q_1 \times X \times Q_1$ to the elements $p \uparrow x \uparrow p^\#$ of X satisfying the compatibility conditions that:

$$\begin{split} q \upharpoonright (p \upharpoonright x \Lsh p^{\#}) \Lsh q^{\#} &= (q\&p) \upharpoonright x \Lsh (p^{\#}\&q^{\#}), a_x \upharpoonright x \Lsh a_x = x, \\ a_{p \upharpoonright x \Lsh p \#, x^{\prime\prime}} &= p\&a_{x,x^{\prime\prime}} \quad \text{and} \quad a_{x^{\prime\prime}, p \upharpoonright x \Lsh p \#} &= a_{x^{\prime\prime}, x}\&p^{\#}, \end{split}$$

for all $x, x'' \in X$ and for all restrictable triplets $(p, x, p^{\#}), (q, p \upharpoonright x \Lsh p^{\#}, q^{\#}) \in Q_1 \times X \times Q_1$. We call a presheaf $(X, A, r^{\'})$ on Q regular or separated if the underlying Q-set (X, A) is regular or separated, respectively.

Now we are engaged in an explicit description of the underlying Q-set of a presheaf.

Theorem 3.4. Given a presheaf $(X, A, \uparrow \Lsh)$ on Q, the matrix $A^s = (a^s_{x,x'})^{x \in X}_{x' \in X}$ defined by

$$a_{x,x'}^s = a_x \& \bigvee \{ p \in P_{x,x'} | p \& p^\# \upharpoonright x \upharpoonright p \& p^\# = p \upharpoonright x' \Lsh p^\# \} \& a_{x'}$$
 (1)

for all $x, x' \in X$, satisfies Idempotency and Regularity (and thus makes (X, A^s) into a regular Q-set), where

$$\begin{split} P_{x,x'} &= \{ p \in Q(d(x),d(x')) | \exists p^\# \in Q(d(x'),d(x)) \text{ such that } (p^\#,x,p) \text{ and } \\ & (p,x',p^\#) \text{ restrictable (i.e., } a_x \& p \& p^\# \& a_x \leqslant a_x, \\ & p^\# \& a_x = p^\# \& p \& p^\# \& a_x, \ a_x \& p = a_x \& p \& p^\# \& p, \ a_{x'} \& p^\# \& p \& a_{x'} \leqslant a_{x'}, \\ & p \& a_{x'} &= p \& p^\# \& p \& a_{x'}, \ \text{and } a_{x'} \& p^\# &= a_{x'} \& p^\# \& p \& p^\#) \}. \end{split}$$

Moreover, it is compatible with A and i'i in the sense that

$$a_{x,x}^s = a_x, (2)$$

$$a_{p\uparrow x\uparrow p\#,x'}^{s} = p\&a_{x,x'}^{s}, \quad and \quad a_{x',p\uparrow x\uparrow p\#}^{s} = a_{x',x}^{s}\&p^{\#},$$
 (3)

for all $x, x' \in X$ and all restrictable triplets $(p, x, p^{\#}) \in Q_1 \times X \times Q_1$ (making the triplet $(X, A^s, \uparrow \uparrow)$) into a regular presheaf on Q).

Proof. Firstly, note that the restrictability of a triplet $(p^\#, x, p)$ implies the restrictability of the triplet $(p\&p^\#, x, p\&p^\#)$ (used in (1)). For instance, to verify the inequality $a_x\&p\&p^\#\&p_x^\#\&a_x\leqslant a_x$, observe that $a_x\&p\&p^\#\&a_x\leqslant a_x$, in view of midsymmetricity, implies that

$$a_x \& p \& p^\# \& p \& p^\# \& a_x = a_x \& p \& p^\# \& a_x \& a_x \& p \& p^\# \& a_x \leqslant a_x \& a_x = a_x.$$

Verifying each of the axioms of Definition 3.1 for A^s in turn, we argue as follows:

Idempotency: $a^s_{x,x'} = \bigvee_{x'' \in X} a^s_{x,x''} \& a^s_{x'',x'}$ for all $x,x' \in X$, since, on the one hand, we have that

because, from the midsymmetricity of the quantaloid, one deduce that

$$\{ p \in P_{x,x''}, p \& p^{\#} \upharpoonright x \Lsh p \& p^{\#} = p \upharpoonright x'' \Lsh p^{\#}, p' \in P_{x'',x'}, \quad \text{and} \quad p' \& {p'}^{\#} \upharpoonright x'' \Lsh p' \& {p'}^{\#} = p' \upharpoonright x' \Lsh p'^{\#} \} \Rightarrow p \& a_{x''} \& p' \in P_{x,x'}$$

(for instance, to verify the inequality:

$$a_x \& (p \& a_{x''} \& p') \& (p'^\# \& a_{x''} \& p^\#) \& a_x \le a_x,$$

observe that relations $a_x \& p \& p^\# \& a_x \leqslant a_x$, $a_{x''} \& p' \& p'^\# \& a x'' \leqslant a_{x''}$, and $p \& p^\# \& a_x \& p \& p^\# = p \& a_{x''} \& p^\#$, imply that

$$a_x \& p \& (a_{x''} \& p' \& p'^{\#} \& a_{x''}) \& p^{\#} \& a_x \le a_x \& (p \& a_{x''} \& p^{\#}) \& a_x$$

$$= a_x \& p \& p^{\#} \& a_x \& p \& p^{\#} \& a_x \le a_x$$

while, for

$$a_x \& (p \& a_{x''} \& p') = a_x \& (p \& a_{x''} \& p') \& (p'^{\#} \& a_{x''} \& p^{\#}) \& (p \& a_{x''} \& p'),$$

we calculate as follows:

$$a_x \& p \& a_{x''} \& (p' \& p'^{\#}) \& a_{x''} \& (p^{\#} \& p) \& a_{x''} \& p'$$

= $(a_x \& p \& p^{\#} \& p) \& (a_{x''} \& p' \& p'^{\#} \& p') = a_x \& p \& a_{x''} \& p')$

and because

$$\{p\&p^\# \upharpoonright x \sqcap p\&p^\# = p \upharpoonright x'' \sqcap p^\# \text{ and } p'\&p'^\# \upharpoonright x'' \sqcap p'\&p'^\# = p' \upharpoonright x' \sqcap p'^\# \} \\ \Rightarrow \{p\&a_{x''}\&p'\&p'^\#\&a_{x''}\&p^\# \upharpoonright p\&p^\# \upharpoonright x \sqcap p\&p^\# \sqcap p\&a_{x''}\&p'^\#\&a_{x''}\&p^\# \\ = p\&a_{x''}\&p'^\#\&a_{x''}\&p^\# \upharpoonright p \upharpoonright x'' \sqcap p^\# \sqcap p\&a_{x''}\&p'^\#\&a_{x''}\&p^\# \\ = p\&a_{x''}\&p'^\#bp'^\# \upharpoonright x'' \sqcap p'\&p'^\# \sqcap a_{x''}\&p^\# = p\&a_{x''} \upharpoonright p' \sqcap x' \sqcap p'^\# \sqcap a_{x''}\&p^\# \\ = p\&a_{x''}\&p'^\#bp'^\# \upharpoonright x'' \sqcap p'\&p'^\# \sqcap a_{x''}\&p^\# \otimes p\&a_{x''} \upharpoonright p' \sqcap x' \sqcap p'^\# \sqcap a_{x''}\&p^\# \} \\ \Rightarrow \{p\&a_{x''}\&p'^\#\&a_{x''}\&p^\#\&p\&p^\#) \upharpoonright x \sqcap (p\&p^\#\&p\&a_{x''})\&p'^\#\&a_{x''}\&p^\# \otimes a_{x''}\&p'^\#\&a_{x''}\&p^\# \otimes a_{x''}\&p^\# \otimes a_{x''}\&p'^\#\&a_{x''}\&p^\# \otimes a_{x''}\&p^\# \otimes a_{x''}\&p'^\#\&a_{x''}\&p^\# \otimes a_{x''}\&p^\# \otimes$$

while, on the other hand,

(putting x'' = x' and $p' = a_{x'}$);

Regularity: $a_{x,x'}^s=a_{x,x'}^s\&a_{x',x}^s\&a_{x,x'}^s$ for all $x,x'\in X$, since, in the one direction, we have that

$$a_{x,x'}^s \& a_{x',x}^s \& a_{x,x'}^s \leqslant a_{x,x'}^s$$
 (by Idempotency of A^s twice),

while, in the other,

(putting $q=r^\#=p^\#$ and $q^\#=r=p$ and noting that

$$p^\#\&p \upharpoonright x' \Lsh p^\#\&p = p^\# \ulcorner x \Lsh p \Leftrightarrow p\&p^\# \ulcorner x \Lsh p\&p^\# = p \ulcorner x' \Lsh p^\#$$

for all $p \in P_{x,x'}$), which completes the verification that the underlying family X of sets of the presheaf $(X, A, \uparrow \uparrow)$ together with A^s is a Q-set.

For (2), in the one direction, we have that

while, in the other,

$$a_x \& \bigvee \{ p \in P_{x,x} | p \& p^\# \upharpoonright x \upharpoonright p \& p^\# = p \upharpoonright x' \upharpoonright p^\# \} \& a_x \leqslant a_x,$$

since from the relation $p\&p^\#\upharpoonright x \Lsh p\&p^\# = p \urcorner x \Lsh p^\#$, it follows that

$$a_x \& p \& a_x = a_x \& a_{p \upharpoonright x \upharpoonright p \#, x} = a_x \& a_{p \& p \# \upharpoonright x \upharpoonright p \& p \#, x}$$
$$= a_x \& p \& p \# \& a_x \leqslant a_x \text{ (by the restrictability of } (p, x, p \#)).$$

To prove the first relation in (3), by the observation that

$$q \in P_{p \uparrow x \uparrow p \#, x'} \Rightarrow a_x \& p^\# \& q \& a_{x'} \in P_{x, x'}$$

and that

$$q\&q^{\#} \sqcap p \sqcap x \sqcap p^{\#} \sqcap q\&q^{\#} = q \sqcap x' \sqcap q^{\#}$$

$$\Rightarrow a_x\&p^{\#}\&q\&a_{x'}\&q^{\#} \sqcap q\&q^{\#} \sqcap p \sqcap x \sqcap p^{\#} \sqcap q\&q^{\#} \sqcap q\&a_{x'}\&q^{\#}\&p\&a_{x}$$

$$= a_x\&p^{\#}\&q\&a_{x'}\&q^{\#} \sqcap q \sqcap x' \sqcap q^{\#} \sqcap q\&a_{x'}\&q^{\#}\&p\&a_{x}$$

$$\Rightarrow a_x\&p^{\#}\&q\&(a_{x'}\&q^{\#}\&q\&q^{\#})\&p \sqcap x \sqcap p^{\#}\&(q\&q^{\#}\&q\&a_{x'})\&q^{\#}\&p\&a_{x}$$

$$= a_x\&p^{\#}\&(q\&a_{x'}\&q^{\#}\&q\&a_{x'}) \sqcap x' \sqcap (a_x\&q^{\#}\&q\&a_{x'})\&p\&a_{x}$$

$$\Rightarrow (a_x\&p^{\#}\&q\&a_{x'})\&(a_{x'}\&q^{\#}\&p\&a_{x}) \sqcap x \sqcap (a_x\&p^{\#}\&q\&a_{x'})$$

$$\&(a_x\&q^{\#}\&p\&a_x) = (a_x\&p^{\#}\&q\&a_{x'}) \sqcap x' \sqcap (a_x\&p^{\#}\&p\&a_x).$$

we obtain the following estimations

$$\begin{split} &a_{p\uparrow'x\uparrow_p\#,x'}^s = a_{p\uparrow'x\uparrow_p\#}\&\, \bigvee \{q \in P_{p\uparrow'x\uparrow_p\#,x'}|q\&q^\# \ \ |\ \ p \ \ |\ \ x \ \ \uparrow p^\# \ \ \uparrow q\&q^\# \\ &= q \ \ |\ \ x' \ \ \uparrow q^\# \}\&a_{x'} \leqslant p\&\, \bigvee \{a_x\&p^\#\&q\&a_{x'} \in P_{x,x'}|(a_x\&p^\#\&q\&a_{x'})\&(a_x\&p^\#\&q\&a_{x'})\&(a_x\&q^\#\&p\&a_x)) \\ &\& (a_x\&q^\#\&p\&e_x) \ \ |\ \ x \ \ \ \uparrow (a_x\&p^\#\&q\&a_{x'})\&(a_x\&q^\#\&p\&a_x) \\ &= (a_x\&p^\#\&q\&a_{x'}) \ \ |\ \ x' \ \ \uparrow (a_x\&q^\#\&p\&a_x)\} \\ &\leqslant p\&\, \bigvee \{q' \in P_{x,x'}|q'\&q'^\# \ \ |\ \ x \ \ \uparrow q'\&q'^\# = q' \ \ |\ \ x' \ \ \uparrow q'^\# \}, \end{split}$$

which implies that

$$a^s_{p \upharpoonright x \Lsh p \#, x'} \leqslant p \& a^s_{x, x'}.$$

64 R. Gylys

For the converse, using the implication

$$\{(p,x,p^{\#}) \text{ is restrictable, } r \in P_{x,x'}, \text{ and } r\&r^{\#} \upharpoonright x \upharpoonright r\&r^{\#} = r \upharpoonright x' \upharpoonright r^{\#}$$

(from which one has $r\&a_{x'} = r\&r^{\#}\&a_{x,x'}\}$) $\Rightarrow p\&a_x\&r \in P_{p\uparrow x \upharpoonright p^{\#},x'}$

and the following series of implications

$$\{(p, x, p^{\#}) \text{ is restrictable and } r\&r^{\#} \upharpoonright x \sqcap r\&r^{\#} = r \upharpoonright x' \sqcap r^{\#}\}$$

$$\Rightarrow p\&a_x\&r\&r^{\#} \upharpoonright r\&r^{\#} \upharpoonright x \sqcap r\&r^{\#} \sqcap r\&r^{\#}\&a_x\&p^{\#}$$

$$= p\&a_x\&r\&r^{\#} \upharpoonright r \upharpoonright x' \sqcap r^{\#} \sqcap r\&r^{\#}\&a_x\&p^{\#}$$

$$\Rightarrow p\&(a_x\&r\&r^{\#}\&r)\&r^{\#} \upharpoonright x \sqcap r\&(r^{\#}\&r\&r^{\#}\&a_x)\&p^{\#}$$

$$= p\&(a_x\&r\&r^{\#}\&r) \upharpoonright x' \sqcap (r^{\#}\&r\&r^{\#}\&a_x)\&p^{\#}$$

$$= p\&(p^{\#}\&p)\&a_x\&(r\&r^{\#})\&a_x \upharpoonright x \sqcap a_x\&(r\&r^{\#})$$

$$\&a_x\&(p^{\#}\&p)\&p^{\#} = (p\&a_x\&r) \upharpoonright x' \sqcap (r^{\#}\&a_x\&p^{\#})$$

$$\Leftrightarrow (p\&a_x\&r)\&(r^{\#}\&a_x\&p^{\#})\&(p\&a_x \upharpoonright x \sqcap a_x\&p^{\#})$$

$$\&(p\&a_x\&r)\&(r^{\#}\&a_x\&p^{\#}) \trianglerighteq (p\&a_x\&r) \upharpoonright x' \sqcap (r^{\#}\&a_x\&p^{\#})$$

$$\Leftrightarrow (p\&a_x\&r)\&(r^{\#}\&a_x\&p^{\#}) \trianglerighteq (p\&a_x\&r) \upharpoonright x' \sqcap (r^{\#}\&a_x\&p^{\#})$$

$$\&(r^{\#}\&a_x\&p^{\#}) \trianglerighteq (p\&a_x\&r) \upharpoonright x' \sqcap (r^{\#}\&a_x\&p^{\#}),$$

we calculate

$$\begin{split} p\&a_{x,x'}^s &= p\&a_x\&\bigvee\{r\in P_{x,x'}|r\&r^\# \upharpoonright x \ \ r\&r^\# = r \ \ r' \ \ r' \ \ r^\#\}\&a_{x'}\\ &= p\&(p^\#\&p)\&a_x\&\bigvee\{a_x\&r|r\in P_{x,x'},r\&r^\# \ \ r' \ \ r'\&r^\# = r \ \ r' \ \ r' \ \ r^\#\}\&a_{x'}\\ &= (p\&a_x\&p^\#)\&\bigvee\{p\&a_x\&r|r\in P_{x,x'},r\&r^\# \ \ r' \ \ r'\&r^\# = r \ \ r' \ \ r' \ \ r^\#\}\&a_{x'}\\ &\leqslant a_{p^\uparrow x \ ^\eta p^\#}\&\bigvee\{p\&a_x\&r\in P_{p^\uparrow x \ ^\eta p^\#,x'}|(p\&a_x\&r)\&(r^\#\&a_x\&p^\#)|^r(p^r x \ ^\eta p^\#) \ \ (p\&a_x\&r)\&(r^\#\&a_x\&p^\#) = (p\&a_x\&r)\ \ \ r' \ \ (r^\#\&a_x\&p^\#)\}\&a_{x'}\\ &\leqslant a_{p^\uparrow x \ ^\eta p^\#}\&\bigvee\{r'\in P_{p^\uparrow x \ ^\eta p^\#,x'}|r'\&r'^\# \ \ (p^\uparrow x \ ^\eta p^\#) \ \ r'\&r'^\# = r' \ \ r' \ \ r'^\#\}\&a_{x'}\\ &= a_{p^\uparrow x \ ^\eta p^\#,x'}^s, \end{split}$$

which completes the proof of the first relation in (3), while the verification of the rest is similar.

We obtain further properties of the regular Q-set (X, A^s) (introduced in Theorem 3.4) in the next few propositions.

Lemma 3.5. Let $(X, A, \uparrow \uparrow)$ be a presheaf on Q and $A^s = (a^s_{x,x'})^{x \in X}_{x' \in X}$ be the structural matrix defined by (1) (in Theorem 3.4). Then the inequality

$$a_{x \ x'}^s \leqslant a_{x,x'} \tag{4}$$

holds for all $x, x' \in X$, i.e., $A^s \leq A$.

Proof. Let us consider elements $x, x' \in X$ and $p, p^\# \in Q_1$ with the properties that $(p^\#, x, p)$ and $(p, x', p^\#)$ are restrictable (i.e., $p \in P_{x,x'}$) and that the equality $p\&p^\# \upharpoonright x \upharpoonright p\&p^\# = p \upharpoonright x' \upharpoonright p^\#$ holds. Then we infer from (3) that $p\&p^\#\&a_{x,x'} = p\&a_{x'}$. Now we obtain

$$a_x \& p \& a_{x'} = a_x \& p \& p^\# \& a_{x,x'} = (a_x \& p \& p^\# \& a_x) \& a_{x,x'} \leqslant a_x \& a_{x,x'} = a_{x,x'},$$
 whence (4).

Lemma 3.6. Let $(X, A, \uparrow \uparrow)$ be a separated presheaf on Q (i.e., (X, A) be a separated Q-set). Let $(p, x', p^{\#})$ and $(p^{\#}, x, p)$ be restrictable triplets. Then the relation

$$p\&p^{\#} \upharpoonright x \upharpoonright p\&p^{\#} = p \upharpoonright x' \upharpoonright p^{\#}$$

$$\tag{5}$$

(presented in (1)) is just the condition that

$$p\&p^{\#}\&a_x\&p\&p^{\#} = p\&a_{x'}\&p^{\#} = p\&p^{\#}\&a_{x,x'}\&p^{\#} = p\&a_{x',x}\&p\&p^{\#}.$$
 (6)

Proof. To prove the implication from (5) to (6), assume (5). Then

$$a_{p\&p\#\uparrow x} + a_{p \nmid x'} + a_{p \nmid x'} + a_{p \nmid x'} + a_{p \mid x'} + a_$$

which implies (6). Assume now (6). Then it is clear that the relations (7) hold. By Separation, this means that (5) holds.

Lemma 3.7. If a presheaf $(X, A, \uparrow \uparrow)$ is separated, then the triplets $(a_{x',x}, x, a_{x,x'})$ and $(a_{x,x'}, x', a_{x',x})$ are restrictable (i.e., $a_{x,x'} \in P_{x,x'}$) and

$$a_{x,x'}\&a_{x',x} \upharpoonright x \Lsh a_{x,x'}\&a_{x',x} = a_{x,x'} \upharpoonright x' \Lsh a_{x',x}$$

for all $x, x' \in X$.

Proof. In view of Idempotency and Regularity of A, it is clear that $a_{x,x'} \in P_{x,x'}$ for all $x,x' \in X$. Moreover, we have that

$$a_{x,x'}\&a_{x',x}\&a_x\&a_{x,x'}\&a_{x',x}=a_{x,x'}\&a_{x'}\&a_{x',x}=a_{x,x'}\&a_{x',x}\&a_{x,x'}\&a_{x',x}$$

for all $x, x' \in X$. By Lemma 3.6, this just says the statement is correct.

Theorem 3.8. If $(X, A, \uparrow \uparrow)$ is a regular and separated presheaf, then the Q-set (X, A^s) introduced in Theorem 3.4 (by (1)) is exactly the underlying Q-set (X, A), that is,

$$a_{x,x'} = a_x \& \bigvee \{p \in P_{x,x'} | p \& p^\# \upharpoonright x \upharpoonright p \& p^\# = p \upharpoonright x' \Lsh p^\# \} \& a_{x'}$$

for all $x, x' \in X$.

66 R. Gylys

Proof. From Lemma 3.7, it follows that

$$a_{x,x'} = a_x \& a_{x,x'} \& a_{x'} \leqslant a_x \& \bigvee \{ p \in P_{x,x'} | p \& p^\# \upharpoonright x \upharpoonright p \& p^\# = p \upharpoonright x' \Lsh p^\# \} \& a_{x'} \leqslant a_x \& \bigvee \{ p \in P_{x,x'} | p \& p^\# \upharpoonright x \upharpoonright p \& p^\# = p \upharpoonright x' \Lsh p^\# \} \& a_{x'} \leqslant a_x \& a_{x,x'} \& a_{x'} \leqslant a_x \& a_$$

for all $x, x' \in X$. In view of Lemma 3.5, this concludes the proof.

References

- [1] G. Van den Bossche, Quantaloids and non-commutative ring representations, Appl. Categ. Structures, 3, 305-320 (1995).
- [2] R.P. Gylys, Sheaves on quantaloids, Liet. matem. rink., 40(2), 133-171 (2000).
- [3] C.J. Mulvey, M. Nawaz, Quantales: quantal sets, In Non-Classical Logics and their Applications to Fuzzy Subsets, eds. U. Höhle, E.P. Klement, Kluwer, Boston, 159-217 (1995).

Priešpluoštai virš midsimetriškų kvantaloidų

R.P. Gylys

Ankstesniame straipsnyje [2] mes nagrinėjome priešpluoščius ir pluoštus virš laisvojo kvantaloido. Šiame darbe tiriami priešpluoščiai virš midsimetriško kvantaloido. Išvesta priešpluoščio struktūrinės matricos išraiška per jo siaurinį ir diagonalę.