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Presheaves on midsymmetrical quantaloids

Remigijus Petras GYLYS (MII)

1. Introduction

In previous paper [2] we studied presheaves and sheaves on an arbitrary quantaloid (ca-
tegory enriched in the category of complete sup-lattices subject to certain laws), where
we had choosed the C.J. Mulvey and M. Nawaz theory [3] as a guideline for futher ge-
neralizations taking our inspiration in the matrix approach of G. Van den Bossche [1].
In this note we continue those investigations restricting our interest to a special subclass
of quantaloids, "midsymmetrical" quantaloids. In this setting it is possible to express the
structural matrix of the underlying Q-set of a regular and separated presheaf in terms of
its "restriction" and "diagonal" (Theorem 3.8). We are going to detail it in a subsequent

paper.

2. Quantaloids and matrices
We first review some of the basic notions.

DEFINITION 2.1. A quantaloidis a locally small category Q such that:
(i) for all u,v objects in @, the hom-set Q(u, v) is a complete lattice,

(ii) composition of morphisms of @ (in this paper denoted by &) preserves arbitrary
joins in both variables:

p& \/ = \_/p&qiand(\/pi)&q = \/pe&q

for all morphisms p,q of Q and for all families (p;), (¢:) of morphisms of Q (for-
ming respective composable pairs). A quantaloid @ will be called midsymmetrical
whenever it satisfies

(iii) p&(q&r)&p’ = p&(r&q)&p’ forall p € Q(u,v), q,7 € Q(v,v), p’ € Q(v,v’).

Note that we use the unconventional left-to-right direction for composition of morp-
hisms. An important example of a one-object midsymmetrical quantaloid is given by the
lattice of all closed left-sided (or right-sided) ideals of a non-commutative C*-algebra.
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From now @ will be an arbitrary midsymmetrical quantaloid having a small set of
objects. Let Qo denote this set and Q, the set of morphisms of Q. Let Set/Qo denotes
the category whose objects are families X of sets X,, indexed by u € Qq. An element
z € X, will be called an element over u and we shall sometimes write d(z) for u.
Morphisms in Set/Qq are families of maps f, : X, — Y.

DEFINITION 2.2. Let Q be a quantaloid and X and Y be two objects of Set/Qo. A
matrix M from X to Y assigns to each pair z, y of X x Y an element of Q:

Mg,y @ d(z) — d(y).

Matrices compose by "matrix multiplication":for M : X — Y,and N : Y — Z, the
composite M&N = L : X — Z has its general element given by

lz; = \/ Mgy &ny .
vey

It is clear that this composition is associative. If Q has units, then the matrix I defined
by

iz,z = idd(z) (unit in Q(d(x)a d(x))),
iz,2 = La(z)d(zy if T # 2’ (bottom element in Q(d(z), d(z'))),

is the unit matrix on X. Matrices from X to Y form a partially ordered set for the point-
wise partial order. Sets over Qo with matrices as 1-morphisms and 2-morphisms given by
partial order determine a bicategory.

3. Q-sets and presheaves on a (midsymmetrical) quantaloid Q

The notions of a (general) Q-set and of a presheaf, which will be given in this section,
are taken from [1] and [2].

DEFINITION 3.1. Let Q be a quantaloid. A Q-set is an object X of Sets/Qq provided
with a matrix 4 : X — X satisfying the following:

Idempotency: A&A = A.

An element z € X of a Q-set (X, A) will said to be strict provided that it satisfies

Strictness: az &0z 3+ = @z o and @y o&az ; = azr ¢ forall 2’ € X and a Q-set
(X, A) itself will be called strict whenever every element z € X is strict.

A Q-set (X, A) will be called regular whenever it satisfies

Regularity: az z» = 6z /&0y &0z o forall z,z' € X .

A Q-set (X, A) will be called separated whenever it satisfies

Separation: if az ;= @z v and azv z = @z o for all 7 € X (which is just the
condition that a; ; = @/ z+ = a3,z = Gz When z and ' are strict), thenz = 2’ .
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We shall usually write a, for az .. Note that regular Q-sets are strict. An example of
a regular Q-set is given in Theorem 3.4 (by (1)).

DEFINITION 3.2. Given a strict Q-set (X, A), the restrictable triplet (p, z, p¥) (of Q; x
X x Q1) is the element of Q1 x X x Q over d(p, z, p*) = dom(p) such that dom(p) =
cod(p*), cod(p) = dom(p*) = d(z)

az&p* &plia, < az, pka, < p&p*&pka,, and
az&p* < az&p#&p&p#,

where the last two inequalities are actually equalities owing to the first inequality.

DEFINITION 3.3. By a presheaf on Q will be meant a Q-set (X, A) together with
Restriction: a partial mapping "% @1 x X x Q; — X (more precisely, a "matrix"

P49= (P‘]u,,,):,‘ggg of partial mappings " ,: Q(u,v) X X, X Q(v,u) — X,) from the

restrictable triplets (p, z, p#) € Q1 x X x Q; tothe elements p " = 4 p* of X satisfying
the compatibility conditions that:

gr (pPz9p*) 9% = (g&p) ? z 1 (p*&q#),a, P T Y ay =z,
App e hp# g/ = p&a:c,:" and Azr pPrhph = a'z”,z&p#’

for all z,z"” € X and for all restrictable triplets (p, z, p¥), (g,p P = 9 p*, q*#) €
Q1 x X x Q1 . We call a presheaf (X, A, ") on Q regular or separated if the underlying
Q-set (X, A) is regular or separated, respectively.

Now we are engaged in an explicit description of the underlying Q-set of a presheaf.

Theorem 3.4, Given a presheaf (X, A,P*) on Q , the matrix A® = (a;,z,)z,ee"g( defined
by

ay o = az& \/{p € P o/|p&p® 1 2 1 p&p® =p P =’ 9 p*}&ay (1)

forallz,z' € X, satisfies Idempotency and Regularity (and thus makes (X, A*) into a
regular Q)-set), where

Prz = {p € Q(d(z),d(z))|3p* € Q(d(z"),d(x)) such that (p*, z,p) and
(p, z', p*) restrictable (i.e., az&plep*&a, < a,
p*&a, =p* &p&p* &a,, ar&p=a &p&p* &p, az &p* &p&ea, <ay,
p&a, = p&p* &p&ay:, and az &p* = a &p* &pep*)}.

Moreover, it is compatible with A and 1 in the sense that

a'::,:c = Qg, 2)

s — 8 S —_
Qpp ot g1 = p&az ., and Ay ppzaph = a;,,z&p#, 3)
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for all z,x' € X and all restrictable triplets (p,z,p*) € Q; x X x Q, (making the
triplet (X, A®,4) into a regular presheaf on Q).

Proof. Firstly, note that the restrictability of a triplet (p¥, z, p) implies the restrictabi-
lity of the triplet (p&p#, =, p&p*) (used in (1)). For instance, to verify the inequality
a, &p&p* &p&p#&a, < a, , observe that a &p&p*&a, < a, in view of midsym-
metricity, implies that

az&p&p#&p&p#&a, = az&p&p#&az&a:&p&p#&a, < az&a; = a,.

Verifying each of the axioms of Definition 3.1 for A? in turn, we argue as follows:
Idempotency: a ., = \,ucx a3 ,n&a% ., forall z,z' € X , since, on the one
hand, we have that

\/ az& \/{p € Py on|p&p® P z Vp&p® = pr 2" 1 p*}&agn
z”EX

&V{p/ € qu,z'lp'&p'# P9 pl&pl# =p Pz 9 pl#}&az/

<V a:&\/{p&ao &p' € Poor|(p&arn&ep)&e(p' ¥ &agnbep?) 1 2 4 (pke
zllex

agnbep)&e(p' e &p™) = (plean&ep) P 2 4 (9% &eagn bep* )} e
<a, \/{p// € Pz‘z'lP,/&P"# Pz pn&p//# — pu Pz Y P”#}&a:',

because, from the midsymmetricity of the quantaloid, one deduce that

{P € Pryon,p&ep® P z 1 p&p* =pra” “p*,p' € Ponyr, and
p’&p'# rz” 9y &p’# =p Pz 9 p’#} = p&a,&p’' € Py

(for instance, to verify the inequality:
az&(p&ay&p')&(p’ # 8azn &p*)&a, < ag,

observe that relations a.&p&p*&a, < ag, a,u&p’&p'#&a:z:” < agzr, and
p&p* &a 8cpbep* = plean&p¥, imply that

a,_-&p&(azu&p'&p'#&a,u)&p#&ax < az&(p&an&p*)&a,
= a,&p&p* &a &plep* &a, < ay;

while, for
008(p&agn &p') = ap&(pagn&ep)&e(p'™ &ean &p* )l (p&asn &p), W
we calculate as follows:

a&&p8eay &(p' &p'* ) &ca & (p* &p)&eaz &p’
= (as&plep* &p)&(az &ep'&ep'™* &p') = a,&plazn&ep)
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and because

{p&p® 1 z 1 p&p* =pr " 1p* and p'&p'* 1 2" 4 P&p®=p' P4 p'#}
= {p&eaz&ep'&p'™ &can&ep® P p&ep® Pz 1p&ep?  p&ag&p'&p'* &agn &ep?
= p&ag&p'&p'® &azn&p® P pP 2 9 p* q pags&ep' &p'*&azn&p*  and
p&agn p’&p’# Pz 9p'&p'® 4 azn&ep® =p&ant p' P ' 4 p'# 9 azn&ep*}
= {p&cag&ep'&p'*8&(apn &pPeplep™) P T 1 (p&p™epleaz )&ep' &cp'F&eag &ept
= p&azbe(p'8ep' ™) oy e lpPoep) &g P " 0o lp?8ep) 8ol (b &ep' ™) e prbep®
and  p&az-&p'&p' ™ P 2" p'&p'F&an &p* =plagn&p' P ' 1p'* &agnbept }
= {p&a&p'&p’ # &apnbep® P z 4 p&agn&p'&p'* &apn &p*

= (p&p™ &p&ea,)&ep' &p' #agn P 2 9 azn&p'&p’ #&(azn&p#&p&p#)

and  p&an&p'&p'™ P 2" 1 p'&p'® &ay&ep? = phep' P &' 4 p'* Koy &p*)
= (P&az&p)&(p'* &agn&ep?) P 2 9 (p&agndep')e(p'* eagnep)
=p&ag&p'&p'* P 2" p'&p'* &agn &ept = (p&agn&p')P z' 9 (p *&azn &p*)
= (p&ag&p' )& (p'* &az&p?) P z 9 (p&eagn&ep’)&(p'® &agn&ept)

= (p&agn&ep) P 2’ 4 (o * &agn&p?),

while, on the other hand,

\/ azé& \/{p € Py oo |p&p® Pz p&p® = pP 2" 1 p* }&agn
zIIEX

&an& V{p' € Por o |p'&p® P 2’ 1 p&p'® =p' P 2’ 9p* }eeay
> a.& V{p € Py o/|p&p® P z 1 p&p? = pr &’ 1 p*)&ay

(putting " = z’ and p’ = au1);

Regularity: ag ., = a3 ,.&aj3, ,&a] ., forall z,z' € X, since, in the one direction,

we have that

a) &al, &al . <al . (byldempotency of A?* twice),
z,T T z,r z,T po y

while, in the other,

a & \/{p € Py o |p&p® Pz p&p* =pr 2’ 1p*}&ay
&a & \/{q € Py z|q&g® P z' Y q&q® = qP z 1q%}&a,
&a & V{r € Ppo|r&r® Pz r&r® =10 2’ 1r#}&ay
> a:&\/{p&p*&p&a,: (=p&a,)|p € Pr i, plep® 1 z 1p&p™ =pr o p#} &as

(putting ¢ = 7# = p* and ¢* = r = p and noting that

p*&p Pz’ Y p*&p = p* Pz 9p o p&p® P z M p&p* =pP 2’ 4 p*
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for all p € P; . ), which completes the verification that the underlying family X of sets
of the presheaf (X, A, ) together with A® is a Q-set.
For (2), in the one direction, we have that

0z = az&a,80; < az& \[{p € Py o|p&p® ¢ z 1 p&p* = pr 2’ 1 p*}&a,,
while, in the other,

az & V{p € Pz,,lp&p# Pxapkp* =praz’ p#}&a, < g,
since from the relation p&p* P z 9 p&p* = p P z 9 p# , it folows that

a &p&a, = az&apf’zﬂp#,: = az&ap&p#r’z‘lp&p#,z
= a,&p&p*&a, < az (by the restrictability of (p, z, p#)).

To prove the first relation in (3), by the observation that
q€ pr‘z"lp#,z' = az&p#&q&az' € Pz,z’
and that

&g Pprzp¥ q&q* =qr ' ¢*
= a &p*&qbeay &q¥ P q&q® P pP z 1 p* 1q&q* 4 q&a, &cq* &plea,
= a, &p* &qbtar &q# P q P 2’ 9 q* 1 q&ay &q* &pka,
= a, &p? &q8&z(az 8q* &qleq®)ap P 4 p*&(qkq™ &q&ea, )&eq* &p&a,
= a,&p* &(q&a &q® &q&a,:) P 1’ 4 (ar &q¥ &q&a, &q# )&ep&as
= (a-&p* &q&a, )& (a &q¥ &p&as) P z 1 (a-8ep™ &qkeay:)

&(az&q* &p&a,) = (a &p® &q&as ) P ' 4 (ap &q* &p&a,),

we obtain the following estimations

Oppzopk o0 = Aprzaprde \[{q € Progups oi|abeg® 1 pP z 9 p# 9 gleg*

=grz' 1¢*}&ay < p& \/{a-&p?* &qkas € Pro|(as&ep? &q&as)
&(ar &q &plee,) P T 4 (a-&p™ &q&a, )& (a. &q &pka,)

= (ar&p* &q&ay:) P 2’ 9 (az&q¥ &pa,)}

<p&\/{¢d € Powlad&q™® Pz q&g® =¢' P 2’ 1¢7%),

which implies that

s s
Cppzap# zt < p&az,:’ .
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For the converse, using the implication

{(p, z, p¥) is restrictable, r € Py, and r&ert Pz Yrder# =r P o’ ar#
(from which one has r&a, = r&r#&a,,z:)} = p&a &r € Pppyop# o

and the following series of implications

{(p, z, p*) is restrictable and r&r¥ P z 1 r&r# =1 2’ 9r#}
= p&ay&réer® P r&r¥ Pz G r&rt 4 r&r#*&a &p*
= p&a &r&er® P rr g’ ¥ 9 r&r#* &a &p*
= p&(ag&r&er&r)&r® 1 z 9 r&(r? &r&r? &a,)&p?
= p&(az&r&r# &r) P o' 9 (r# &r&r &a, ) &p*
= p&(p* &p)&a & (r&r#)&a, P = 1 a,&(r&r?)
&a & (p* &p)&p* = (p&az&r) P 2’ 4 (r# &a &p*)
= (p&ag&er)&e(r# &a&p*)&(p&ka, P T 9 a &p¥)
&(p&ay&er)&(r¥ &a, &p?) = (p&as&er) P z' 4 (r* &a &p*)
= (p&a &r)&(r# &a &p®) P (pP = 9 p*) 4 (p&as&r)
&(r* &az&p*) = (p&agker) Pz’ 9 (r#&a &p*),

we calculate

p&a; . = p&a & V{'r € Py y|r&r® Pz Vr&r® =rr 2’ 9r¥}&ay
=p&(p* &p)&a & \[{aker|r € Poyr,r&r® P 2 Ir&r® =r ¢ o' 11% )&z
= (p&a,&p#)&\/{p&a,&ﬂr € Ppoyr&r® Pz rér® =1 &’ 11¥}&ay
< aprropp & \[{P&a&r € Py st 2| (Peaz&r)&e(r¥ &az&p¥) P (pr 2 1p¥) 0
(p&eag&r)&(r* &a &p*) = (p&as&r) P 2’ 4 (r*&az&p* )} &az

L appgapk &\/{r' € Pppzop# 2t |r'&r’# P (prz 9p¥) Ul F=r'p x"'lr'#}&a;,,
= ppgap# o0

which completes the proof of the first relation in (3), while the verification of the rest is

similar.

We obtain further properties of the regular Q-set (X, A*) (introduced in Theorem 3.4)
in the next few propositions.

Lemma 3.5. Let (X, A,19) be a presheaf on Q and A® = (a;’z,):,ee)g( be the structural
matrix defined by (1) (in Theorem 3.4). Then the inequality

ag o < Gz,z/ @
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holds forall z,z’ € X ,ie, A* < A.
Proof. Let us consider elements z,z' € X and p,p* € Q) with the properties that
(p*, z, p) and (p, =, p*) are restrictable (i.e., p € Py . ) and that the equality p&p#
z Y p&p# = p P =’ 4 p* holds. Then we infer from (3) that p&p#*&a, . = p&ay: .
Now we obtain
a&p&a, = az&p&p#&a,,zr = (az&p&p#&az)&az|z' < az&az = agy0,

whence (4).

Lemma 3.6. Let (X, A,9) be a separated presheaf on Q (i.e., (X, A) be a separated
Q-set). Let (p, ', p¥*) and (v#, x, p) be restrictable triplets. Then the relation

p&p® Pz p&p® =pr 2’ 9p* )
(presented in (1)) is just the condition that

plep* &a &plep* = p&a &p* = plp*&a, o &p* = plag. &plp*.  (6)
Proof.’ To prove the implication from (5) to (6), assume (5). Then

Qpgp#rripkpt = Oppzrap# = QppkPriplp® pPaz'ipt = Gppzrap# plp#rziplpt s (7)

which implies (6). Assume now (6). Then it is clear that the relations (7) hold. By Sepa-
ration, this means that (5) holds.

Lemma 3.7. If a presheaf (X, A, ') is separated, then the triplets (a; , T, 0z /) and
(@z,07, T, Gy 1) are restrictable (i.e., 0z 5 € Py ) and

Or,2&az 2 P TN 0p &gz =0z P T Vg 5
forallz,z' € X .

Proof. In view of Idempotency and Regularity of A , it is clear that a; 5+ € Py . for all
z,z' € X . Moreover, we have that

az,x'&a::’,z&az&az,z'&az’,z = az,:z’&az’&ax’,x = aa:,:c’&ax',z&a:c,z’&az',:
forall z,z’ € X . By Lemma 3.6, this just says the statement is correct.

Theorem 3.8. If (X, A,4) is a regular and separated presheaf, then the Q-set (X, A®)
introduced in Theorem 3.4 (by (1)) is exactly the underlying Q-set (X, A), that is,

Oz, = a & V{p I= Pz,zllp&p# rz9 p&p# =prz' 4 p#}&az,

SJorallz,z' € X .
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Proof. From Lemma 3.7, it follows that
Qg x! =az&az,z’&az' Saz&\/{p € P::,z"P&P# Pz p&p#=;D P’ 9 p#}&at'

for all z, 2’ € X. In view of Lemma 3.5, this concludes the proof.
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Priespluostai vir§ midsimetrisku kvantaloidy
R.P. Gylys

Ankstesniame straipsnyje [2] mes nagrinéjome prieSpluotius ir pluostus vir¥ laisvojo kvan-
taloido. Siame darbe tiriami prie3pluoi&iai vir§ midsimetrisko kvantaloido. Ifvesta prie3pluoitio
struktarinés matricos iSrai¥ka per jo siaurini, ir diagonale.



