A limit theorem for the Hurwitz zeta-function on the space of meromorphic functions

Jolita IGNATAVIČIŪTĖ (VU) e-mail:jolita.ignataviciute@maf.vu.lt

Let $s=\sigma+it$ be a complex variable. The Hurwitz zeta-function is defined for $\sigma>1$ by the following Dirichlet series

$$\zeta(\alpha, s) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s},$$

here $\alpha \in \mathbb{R}$, $0 < \alpha \le 1$, is a fixed parameter. The function is analytically continuable over the complex plane except for a simple pole at the point s = 1 with the residue 1.

Let for $N \in \mathbb{N}$

$$\mu_N(\ldots) = \frac{1}{N+1} \# \{0 \leqslant k \leqslant N, \ldots\},$$

here instead of dots we write a condition satisfied by k.

Let h > 0 be a fixed number such that $\exp\{2\pi/h\}$ is rational. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S. We assume that α is a transcendental number.

Let $d(z_1, z_2)$ be a metric on the Riemann sphere $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ given by the formulae

$$d(z_1, z_2) = \frac{2|z_1 - z_2|}{\sqrt{1 + |z_1|^2} \sqrt{1 + |z_2|^2}}, \quad d(z, \infty) = \frac{2}{\sqrt{1 + |z|^2}}, \quad d(\infty, \infty) = 0,$$

 $z, z_1, z_2 \in \mathbb{C}$. This metric is compatible with the topology of \mathbb{C}_{∞} .

Denote by M(D) the space of meromorfic on D functions $f: D \to (\mathbb{C}_{\infty}, d)$ equipped with the topology of uniform convergence on compacta.

Define a probability measure

$$P_N(A) = \mu_N(\zeta(\alpha, s + ikh) \in A), \quad A \in \mathcal{B}(M(D)).$$

In this note we present a discrete limit theorem for the Hurwitz zeta-function $\zeta(\alpha, s)$ on the space of meromorphic functions:

Theorem. There exists a probability measure P on $(M(D), \mathcal{B}(M(D)))$ such that the probability measure P_N converges weakly to P as $N \to \infty$.

Let

$$f_1(s) = 1 - 2^{1-s},$$

and

$$f_2(s) = \zeta(\alpha, s) f_1(s).$$

Then the function $f_2(s)$ is analytic on D. Denote by H(D) the space of analytic on D functions equipped with the topology of uniform convergence on compacta.

Define probability measures

$$P_{N,f_1}(A) = \mu_N(f_1(s+ikh) \in A), \quad A \in \mathcal{B}(H(D)),$$

and

$$P_{N,f_2}(A) = \mu_N(f_2(s+ikh) \in A), \quad A \in \mathcal{B}(H(D)).$$

Lemma 1. There exists a probability measure P_{f_1} on $(H(D), \mathcal{B}(H(D)))$ such that the probability measure P_{N,f_1} converges weakly to P_{f_1} as $N \to \infty$.

Proof. The function $f_1(s)$ is a Dirichlet polynomial. Therefore the proof coincides with that of Lemma 1 from [4].

Lemma 2. There exists a probability measure P_{f_2} on $(H(D), \mathcal{B}(H(D)))$ such that the probability measure P_{N,f_2} converges weakly to P_{f_2} as $N \to \infty$.

Reasoning similarly to the proof of Theorem from [4] we obtain the assertion of the lemma.

The functions $f_1(s)$ and $f_2(s)$ have a discrete limit distribution on the space H(D). Now we will prove a joint limit theorem for these functions.

Denote by

$$F(s) = (f_1(s), f_2(s))$$

is a $H^2(D)$ -valued random element, here $H^2(D)$ denotes the Cartesian product $H^2(D) \times H^2(D)$. Let P_F stand for the distribution of F(s), and define a probability measure

$$P_{N,F}(A) = \mu_N \big(F(s+ikh) \in A \big), \quad A \in \mathcal{B}\big(H^2(D) \big).$$

Lemma 3. There exists a probability measure P_F on $(H(D), \mathcal{B}(H(D)))$ such that the probability measure $P_{N,F}$ converges weakly to P_F as $N \to \infty$.

Proof. The first step. By Lemmas 1 and 2 we have that P_{N,f_j} converges weakly to P_{f_j} as $N \to \infty$, j=1,2. Consequently, the family of probability measures $\{P_{N,f_j}\}$ is tight, j=1,2. Then for each $\varepsilon > 0$ there exists a compact set $K_j \in H(D)$, j=1,2, such that

$$P_{N,f_j}(H(D)\setminus K_j)<\frac{\varepsilon}{2},\quad j=1,2.$$
 (3.1)

Let θ_N be a random variable on $(\widetilde{\Omega}, \mathcal{F}, \mathbb{P})$ with the distribution

$$\mathbb{P}(\theta_N = kh) = \frac{1}{N+1}, \quad k = 0, 1, \dots, N.$$

Define a $H^2(D)$ -valued random element

$$F_N(s) = (f_1(s+i\theta_N), f_2(s+i\theta_N)).$$

From the definition of P_{N,f_i} and (3.1), j = 1, 2, it follows that

$$P_{N,f_j}ig(H(D)\setminus K_jig)=\mathbb{P}ig(f_j(s+i heta_N)\in H(D)\setminus K_jig)<rac{arepsilon}{2},\quad j=1,2.$$

Now let us take $K = K_1 \times K_2$. Then

$$P_{N,F}(H^2(D)\setminus K) = \mathbb{P}(F_N \in H^2(D)\setminus K) < \varepsilon.$$

In a such way the family $\{P_{N,F}\}$ is tight.

The second step. Denote by s_1, \ldots, s_r arbitrary points on D, and let the function $u: H^2(D) \to H(D)$ be given by the formula

$$u(f_1, f_2) = \sum_{m=1}^{r} a_{1m} f_1(s_m + s) + \sum_{m=1}^{r} a_{2m} f_2(\alpha, s_m + s),$$

here $a_{1m}, a_{2m} \in \mathbb{C}$, $s \in D$. Set, for $\sigma > \frac{1}{2}$,

$$Z(s) = u(f_1(s), f_2(s)).$$

Then

$$Z(s) = \sum_{m=1}^{r} a_{1m} f_1(s_m + s) + \sum_{m=1}^{r} a_{2m} f_2(s_m + s).$$

For $\sigma > \frac{1}{2}$ the functions f_1 and f_2 are presented by absolutely convergent Dirichlet series

$$f_1(s) = \sum_{l=1}^{\infty} \frac{b_{1l}}{l^s}, \quad f_2(s) = \sum_{l=1}^{\infty} \frac{b_{2l}}{(l+\alpha)^s}, \quad b_{1l}, b_{2l} \in \mathbb{C}.$$

Consequently,

$$Z(s) = \sum_{l=1}^{\infty} \sum_{m=1}^{r} \frac{a_{1m}b_{1l}}{l^{s_m+s}} + \sum_{l=1}^{\infty} \sum_{m=1}^{r} \frac{a_{2m}b_{2l}}{(l+\alpha)^{s_m+s}}.$$

Repeating the proof of Lemma 2, we obtain that probability measure

$$P_{N,Z}(A) = \mu_N(Z(s+ikh) \in A), \quad A \in \mathcal{B}(H(D)), \tag{3.2}$$

converges weakly to some probability measure P_Z as $N \to \infty$.

The third step. Since the family $\{P_{N,F}\}$ is relatively compact, we can find a subsequence $\{P_{N',F}\}$ which converges weakly to P^* as $N' \to \infty$. Suppose that P^* is the distribution of some $H^2(D)$ -valued random element

$$F^*(s) = (f_1^*(s), f_2^*(s)).$$

Therefore

$$F_{N'} \xrightarrow{\mathcal{D}} F^*.$$
 (3.3)

Taking into account the continuity of the function u we deduce that

$$u(F_{N'}) \xrightarrow[N' \to \infty]{\mathcal{D}} u(F^*).$$

Switching to the definition of Z(s) we have

$$Z(s+i\theta_{N'}) \xrightarrow[N'\to\infty]{\mathcal{D}} u(F^*).$$

By the second step of the proof

$$Z(s+i\theta_{N'}) \xrightarrow[N'\to\infty]{\mathcal{D}} u(F).$$

Consequently,

$$u(F) = u(F^*) \tag{3.4}$$

in the sense of distribution.

Now let $u_1: H(D) \to \mathbb{C}$ be defined by the formula

$$u_1(f) = f(0), \quad f \in H(D).$$

Then the function u_1 is a random element, and (3.5) gives

$$u(F)(0) = u(F^*)(0)$$

in the sense of distribution. The definition of u yields

$$\sum_{m=1}^{r} a_{1m} f_1(s_m) + \sum_{m=1}^{r} a_{2m} f_2(s_m) = \sum_{m=1}^{r} a_{1m} f_1^*(s_m) + \sum_{m=1}^{r} a_{2m} f_2^*(s_m)$$

in the sense of distribution with $a_{1m}, a_{2m} \in \mathbb{C}$. The hyperplanes form a determining class on the space \mathbb{R}^{4n} [1]. Therefore, the hyperplanes also form a determining class on the space \mathbb{C}^{2n} . From (3.4) it follows that \mathbb{C}^{2n} -valued random elements $f_j(s_m), j=1,2,$ $m=1,\ldots,r$, have the same distribution as $f_j^*(s_m), j=1,2, m=1,\ldots,r$.

Let K be a compact subset of D, and a sequence $\{s_m\}$ to be relatively compact in K. For $\varepsilon > 0$ we construct the sets

$$S = \Big\{ (g_1, g_2) \in H^2(D) : \sup_{s \in K} \big| g_j(s) - f_j(s) \big| < \varepsilon, \ f_j \in H(D), \ j = 1, 2 \Big\},$$

and

$$S_n = \left\{ (g_1, g_2) \in H^2(D) : \left| g_j(s_m) - f_j(s_m) \right| < \varepsilon, \ f_j \in H(D), \right.$$
$$j = 1, 2, \ m = 1, \dots, n \right\}.$$

The same distribution of f_j and f_j^* , j=1,2, implies that $F^*(\alpha,s) \in S_n$. Since $\{s_m\}$ is relatively compact, then $F^*(\alpha,s) \in S$. It is known that $\{\bigcap_{n=1}^m S_n, m \in \mathbb{N}\}$ form a determining class [1]. Hence we obtain

$$F^* = F$$

in the sense of distribution.

This and (3.3) yield

$$F_{N'} \xrightarrow[N' \to \infty]{\mathcal{D}} F.$$

Since the random element F does not depend on the choice of the sequence N', we obtain the assertion of the lemma.

Proof of Theorem

Now we define the function $v: H^2(D) \to M(D)$ by the formula

$$v(f_1, f_2) = \frac{f_1}{f_2}, \quad f_1, f_2 \in H(D).$$

The definition of the metric d on \mathbb{C}_{∞} implies

$$d(f_1, f_2) = d\left(\frac{1}{f_1}, \frac{1}{f_2}\right).$$

Consequently, the function v is continuous. In view of the definition of v

$$\mu_N\big(\zeta(\alpha,s+ikh)\in A\big)=\mu_N\Big(v\big(f_1(s+ikh),f_2(s+ikh)\big)\in A\Big),\ A\in\mathcal{B}\big(M(D)\big).$$

Applying Lemma 3 we deduce that the probability measure $P_N = P_{N,F}u^{-1}$ converges weakly to some probability measure P as $N \longrightarrow \infty$.

Theorem is proved.

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York (1967).
- [2] H. Davenport, Multiplicative Number Theory, Markham Publishing Company, Chicago (1971).
- [3] J. Ignatavičiūtė, A discrete limit theorem for the Lerch zeta-function, Liet. Mat. Rink. (to appear).
- [4] J. Ignatavičiūtė, A limit theorem for the Lerch zeta-function on the space of analytic functions, Fizikos ir matematikos fakulteto mokslinio seminaro darbai, 5-13 (2000).
- [5] A. Laurinčikas, A limit theorem for the Lerch zeta-function on the space of analytic functions, *Lith. Math. J.*, 2(37), 191-203 (1997).
- [6] H.L. Montgomery, Topics in Multiplicative Number Theory, Springer, Berlin (1971).

Ribinė teorema Hurwitz'o dzeta funkcijai meromorfinių funkcijų erdvėje

J. Ignatavičiūtė

Irodoma diskreti ribinė teorema Hurwitz'o dzeta funkcijai meromorfinių funkcijų erdvėje.