A multidimensional discrete limit theorem for the Matsumoto zeta-function in the space of analytic functions

Roma KAČINSKAITĖ* (VU)
e-mail:roma.kacinskaite@maf.vu.lt

1. Introduction

Let $s = \sigma + it$ be a complex variable, and let \mathbb{N} and \mathbb{C} denote the set of all natural numbers and complex numbers, respectively. The Matsumoto zeta-function $\varphi(s)$ is defined by

$$\varphi(s) = \prod_{m=1}^{\infty} A_m^{-1}(p_m^{-s}). \tag{1}$$

Here

$$A_m(x) = \prod_{j=1}^{g(m)} \left(1 - a_m^{(j)} x^{f(j,m)}\right)$$

is a polynomial of degree $f(1,m)+\ldots f(g(m),m)$, where $a_m^{(j)}$ are complex numbers, g(m) and f(j,m) are natural numbers, $1 \le j \le g(m)$, $m \in \mathbb{N}$, and p_m denotes the m-th prime number. In [6] K. Matsumoto assumed the conditions

$$g(m) = Bp_m^{\alpha}, \quad |a_m^{(j)}| \leqslant p_m^{\beta}, \tag{2}$$

where B is a quantity bounded by a constant, and α and β are non-negative constants. Under these conditions infinitedimensional product (1) converges absolutely in the half-plane $\sigma > \alpha + \beta + 1$, and defines a holomorphic function with no zeros.

The discrete value-distribution for the Matsumoto zeta-function was investigated in [2], [3], [4].

The aim of this note is to prove a multidimensional discrete limit theorem in the sence of the weak convergence of probability measures for the Matsumoto zeta-functions in the space of analytic functions.

^{*}Partially supported by Grant from Lithuanian Science and Studies Foundation.

Let $A_{lm}(x)$ be a polynomial (respectively functions $\varphi_l(s)$) given by

$$A_{lm}(x) = \prod_{j=1}^{g_l(m)} (1 - a_{lm}^{(j)} x^{f_l(j,m)}), \quad l = 1, \dots, r,$$

where $r \geqslant 2$. Suppose the functions $\varphi_l(s)$ are analytic in the strip $D = \{s \in \mathbb{C} : \rho_0 < 0\}$ $\sigma < \alpha + \beta + 1$, where $\alpha + \beta + \frac{1}{2} < \rho_0 < \alpha + \beta + 1$, and conditions (2) are satisfied. Moreover, for $\sigma > \rho_0$

$$\varphi_l(\sigma + it) = B|t|^{\delta},\tag{3}$$

with some positive δ , and

$$\int_{0}^{T} |\varphi_{l}(\sigma + it)|^{2} dt = BT, \quad T \to \infty.$$
(4)

Denote by H(D) the space of analytic on D functions equipped with the topology of uniform convergence on compacta, and by $H^r(D)$ denote the Cartesian product of $\underbrace{H(D)\times\ldots\times H(D)}_r.$ Let γ be the unit circle on $\mathbb C$, i.e., $\gamma=\{s\in\mathbb C:|s|=1\}$, and let

$$\Omega=\prod_p\gamma_p,$$

 $\gamma_p = \gamma$ for all primes p. With the product topology and pointwise multiplication the infinite-dimensional torus Ω is a compact topological Abelian group. Let m_H be the probability Haar measure on $(\Omega, \mathcal{B}(\Omega))$, where $\mathcal{B}(S)$ denotes the class of Borel sets of the space S. This gives a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space γ_p . Then on the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$ an H(D)-valued random element is defined by

$$arphi_l(s,\omega) = \prod_{m=1}^{\infty} \prod_{i=1}^{g_l(m)} \left(1 - \frac{a_{lm}^{(j)} \omega^{f_l(j,m)}(p_m)}{p_m^{sf_l(j,m)}}\right)^{-1}, \quad l = 1, \ldots, r.$$

On $(\Omega, \mathcal{B}(\Omega), m_H)$ define an $H^r(D)$ -valued random element

$$\Phi(s,\omega) = (\varphi_1(s,\omega), \dots, \varphi_r(s,\omega)), \quad \omega \in \Omega, \quad s \in D.$$

Moreover, let

$$\Phi(s) = (\varphi_1(s), \ldots, \varphi_r(s)),$$

and define a probability measure

$$P_N(A) = \mu_N(\Phi(s+ikh) \in A), \quad A \in \mathcal{B}(H^r(D)).$$

Here

$$\mu_N(\ldots) = \frac{1}{N+1} \# \{ 0 \le k \le N, \ldots \},$$

h is a real fixed positive number, $N \in \mathbb{N}$ and instead of dots a condition satisfied by k is to be written. Let P_{Φ} stand for the distribution of the random element $\Phi(s, \omega)$, i.e.,

$$P_{\Phi}(A) = m_H(\omega \in \Omega : \Phi(s, \omega) \in A), \quad A \in \mathcal{B}(H^r(D)).$$

Theorem. Suppose that $\exp\left\{\frac{2\pi k}{h}\right\}$ is irrational for all integers $k \neq 0$, and the functions $\varphi_l(s)$, $l=1,\ldots,r$, satisfied the conditions (3), (4). Then the probability measure P_N converges weakly to P_{Φ} as $N \to \infty$.

2. Proof of the Theorem

First we recall that the family of probability measures $\{P\}$ is relatively compact if every sequence of elements of $\{P\}$ contains a weakly convergent subsequence. The family $\{P\}$ is tight if for an arbitrary $\varepsilon > 0$ there exists a compact set K such that $P(K) > 1 - \varepsilon$ for all $P \in \{P\}$.

Lemma 1. The family of probability measures $\{P_N\}$ is relatively compact.

Proof. Let $P_{\varphi l}$ is the distribution of the random element $\varphi_l(s,\omega)$, $l=1,\ldots,r$. Then by the Theorem of [3] the probability measure

$$P_{l,N}(A) = \mu_N(\varphi_l(s+ikh) \in A), \quad A \in \mathcal{B}(H(D))$$

converges weakly to $P_{\varphi,l}$ as $N \to \infty$, $l=1,\ldots,r$. Hence we have that the family of probability measures $\{P_{l,N}\}$ is relatively compact, $l=1,\ldots,r$. Since H(D) is a complete separable space, then we obtain by Prokhorov's theorem from [1] that the family $\{P_{l,N}\}$ is tight. This means that for every $\varepsilon > 0$ there exists a compact set $K_l \subset H(D)$ such that

$$P_{l,N}(H(D)\setminus K_l)<\frac{\varepsilon}{r},\quad l=1,\ldots,r.$$
 (5)

Denote by θ a random variable defined on probability space $(\Omega_0, \mathcal{B}(\Omega_0), \mathbb{P})$ such that

$$\mathbb{P}(\theta_N = kh) = \frac{1}{N+1}, \quad k = 0, 1, \dots, N,$$

where $N \in \mathbb{N}$, and let the H(D)-valued random element $\Phi_N(s)$ be given by

$$\Phi_N(s) = (\varphi_{1,N}(s), \ldots, \varphi_{r,N}(s)).$$

Here

$$\varphi_{l,N}(s) = \varphi_l(s+i\theta_N), \quad l=1,\ldots,r.$$

Then by the definition of $P_{l,N}$ and (5) we have

$$\mathbb{P}(\varphi_{l,N} \in H(D) \setminus K_l) < \frac{\varepsilon}{r}, \quad l = 1, \dots, r.$$
(6)

Now let $K = K_1 \times ... \times K_r$. Then K is a compact set of the space $H^r(D)$, and, by (6), we obtain

$$P_{N}(H^{r}(D) \setminus K) = \mathbb{P}(\Phi_{N}(s) \in H^{r}(D) \setminus K) = \mathbb{P}\left(\bigcup_{l=1}^{r} (\varphi_{l,N}(s) \in H(D) \setminus K_{l})\right)$$

$$\leq \sum_{l=1}^{r} \mathbb{P}(\varphi_{l,N}(s) \in H(D) \setminus K_{l}) < \varepsilon. \tag{7}$$

(7) show that the family $\{P_N\}$ is tight. By the Prokhorov theorem [1] it is relatively compact. The lemma is proved.

Now let s_1, \ldots, s_n be arbitrary points on D, and

$$\sigma_1 = \min_{1 \leqslant l \leqslant n} \Re s_l.$$

Then $\sigma_2 = \rho_0 - \sigma_1 < 0$, and we set

$$\hat{D} = \{ s \in \mathbb{C} : \sigma > \sigma_2 \}.$$

Moreover, let u_{lm} be arbitrary complex numbers, $1 \leq l \leq r$, $1 \leq m \leq n$. Define a function $u: H^r(D) \to H(\hat{D})$ by the formula

$$u(\varphi_1,\ldots,\varphi_n)=\sum_{l=1}^r\sum_{m=1}^nu_{lm}\varphi_l(s_m+s),$$

where $s \in \hat{D}, \varphi_l \in H(D), l = 1, \dots, r$. Let

$$W(s) = u(\varphi_1(s), \ldots, \varphi_r(s)),$$

and denote by $\underset{N\to\infty}{\xrightarrow{\mathcal{D}}}$ the convergence in distribution.

Lemma 2. We have

$$W(s+i\theta_N) \xrightarrow[N\to\infty]{\mathcal{D}} u(\Phi(s)).$$

Proof. The proof is similar to that Lemma 14 of [4]. By Lemma 1 there exists a sequence $N_1 \to \infty$ such that the measure P_{N_1} converges weakly to some probability measure P on $(H^r(D), \mathcal{B}(H^r(D)))$ as $N_1 \to \infty$. Let P be the distribution $H^r(D)$ -valued random element

$$\Phi_1(s) = (\varphi_{11}(s), \ldots, \varphi_{1r}(s)).$$

Then

$$\Phi_{N_1} \xrightarrow[N_1 \to \infty]{\mathcal{D}} \Phi_1. \tag{8}$$

The function u is continuous. Consequently

$$u(\Phi_{N_1}) \xrightarrow[N_1 \to \infty]{\mathcal{D}} u(\Phi_1).$$

Therefore, by definition of W, we find

$$W(s+i\theta_{N_1}) \xrightarrow[N_1 \to \infty]{\mathcal{D}} u(\Phi_1). \tag{9}$$

For $\sigma > \alpha + \beta + \frac{1}{2}$ by the definition of the function u

$$W(s) = \sum_{l=1}^{r} \sum_{m=1}^{n} u_{lm} \varphi_l(s_m + s) = \sum_{k=1}^{\infty} \frac{a_k}{k^s},$$
(10)

where

$$a_k = \sum_{l=1}^r \sum_{m=1}^n \frac{u_{lm}c_l(k)}{k^{s_m}},$$

since in this region $\varphi_l(s)$ is presented by an absolutely convergent Dirichlet series

$$\varphi_l(s) = \sum_{k=1}^{\infty} \frac{c_k(k)}{k^s}, \quad l = 1, \dots, r.$$

Moreover, $c_l(k) = Bk^{\alpha+\beta+\varepsilon}$ for every $\varepsilon > 0$. The function W(s) satisfies the same conditions as the functions $\varphi_l(s)$. Therefore, repeating proof of Theorem from [3], we find that the probability measure

$$\mu_N(W(s+ikh) \in A), \quad A \in \mathcal{B}(H(\hat{D})),$$
 (11)

converges weakly to the distribution of the random element

$$W(s,\omega) = \sum_{k=1}^{\infty} \frac{a_k \omega(k)}{k^s}.$$

Here $\omega(k)$ is defined by the formula

$$\omega(k) = \prod_{p^{\alpha} || k} \omega^{\alpha}(p),$$

where $p^{\alpha}||k$ means that $p^{\alpha}|k$ but $p^{\alpha+1} \not|k$. If $s \in D$, we have

$$\varphi_l(s,\omega) = \sum_{k=1}^{\infty} \frac{c_l(k)\omega(k)}{k^s}, \quad l = 1, \dots, r.$$

Then the definition of u, in view (10), yield

$$W(s,\omega) = \sum_{l=1}^{r} \sum_{m=1}^{n} u_{lm} \sum_{k=1}^{\infty} \frac{c_{l}(k)\omega(k)}{k^{s_{m}+s}}$$
$$= \sum_{l=1}^{r} \sum_{m=1}^{n} u_{lm} \varphi_{l}(s_{m}+s,\omega) = u(\Phi(s,\omega)).$$

Therefore, the measure (11) converges weakly to the distribution of the random element $u(\Phi(s,\omega))$ as $N\to\infty$. Hence we have the assertion of the lemma.

Proof of Theorem. By Lemma 2 we have

$$W(s+i\theta_{N_1}) \xrightarrow[N_1\to\infty]{\mathcal{D}} u(\Phi),$$

where N_1 is the same as in proof Lemma 2. From this and (9) we have that

$$u(\Phi) \stackrel{\mathcal{D}}{=} u(\Phi_1). \tag{12}$$

Now let $u_1: H(\hat{D}) \to \mathbb{C}$ be defined by the formula

$$u_1(f) = f(0), \quad f \in H(\hat{D}).$$

Then the function u_1 is measurable. Consequently, in virtue of (12)

$$u(\Phi)(0) \stackrel{\mathcal{D}}{=} u(\Phi_1)(0).$$

Then by the definition of u we find

$$\sum_{l=1}^{r} \sum_{m=1}^{n} u_{lm} \varphi_l(s_m) \stackrel{\mathcal{D}}{=} \sum_{l=1}^{r} \sum_{m=1}^{n} u_{lm} \varphi_{1l}(s_m)$$
(13)

for arbitrary complex numbers u_{lm} . A hyperplane in \mathbb{R}^{2rn} form a determining class [1]. Then, the hyperplanes also form a determining class in the space \mathbb{C}^{rn} . Therefore, in view of (13), we see that \mathbb{C}^{rn} -valued random elements $\varphi_l(s_m)$ and $\varphi_{1l}(s_m)$, $l=1,\ldots,r$, $m=1,\ldots,n$, have the same distribution.

Let K be a compact subset of D, and let $f_1, \ldots, f_r \in H(D)$. For any $\varepsilon > 0$

$$G = \Big\{(u_1,\ldots,u_r) \in H^r(D): \sup_{s \in K} \big|u_l(s) - f_l(s)\big| \leqslant \varepsilon, \quad l = 1,\ldots,r\Big\}.$$

Let $\{s_m\}$ be a sequence dense in K. Moreover, let

$$G_n = \{(u_1, \dots, u_r) \in H^r(D) : |u_l(s_m) - f_l(s_m)| \le \varepsilon,$$

 $l = 1, \dots, r, \quad m = 1, \dots, n\}.$

Then the properties of the random elements $\varphi_l(s_m)$ and $\varphi_{1l}(s_m)$ yield

$$m_H(\omega \in \Omega : \Phi(s, \omega) \in G_n) = P(\Phi_1(s) \in G_n).$$
 (14)

Since the sequence $\{s_m\}$ is dense in K, we have $G_n \to G$ as $n \to \infty$. Therefore, if $n \to \infty$ in (14), we obtain

$$m_H(\omega \in \Omega : \Phi(s,\omega) \in G) = P(\Phi_1(s) \in G).$$
 (15)

The space $H^r(D)$ is separable. Thus finite intersections of the spheres form a determining class [1]. Hence and from (14) we obtain

$$\Phi \stackrel{\mathcal{D}}{=} \Phi_1$$
.

From this and (8) we have

$$\Phi_{N_1} \xrightarrow[N_1 \to \infty]{\mathcal{D}} \Phi. \tag{16}$$

Therefore, the measure P_{N_1} converges weakly to the distribution of random element Φ as $N_1 \to \infty$. Consequently, the assertion of Theorem we obtain from Lemma 1 and Theorem 1.1.9 [5], since the random element Φ in (16) is independent on the choice of the sequence N_1 .

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).
- [2] R. Kačinskaitė, Discrete limit theorem for the Matsumoto zeta-function on the complex plane, Lith. Math. J., 40(4), 475-492 (2000) (in Russian).
- [3] R. Kačinskaitė, Discrete limit theorem for the Matsumoto zeta-function in the space of analytic functions, Liet. Matem. Rink. (to appear).

- [4] R. Kačinskaitė, Discrete limit theorem for the Matsumoto zeta-function in the space of meromorphic functions, Liet. Matem. Rink. (to appear).
- [5] A. Laurinčikas, Limit Theorems for the Riemann zeta-function, Kluwer, Dordrecht (1996).
- [6] K. Matsumoto, Value distribution of zeta-functions, Lecture Notes in Math., Springer, 1434, 178-187 (1990).

Daugiamatė diskrečioji ribinė teorema Matsumoto dzeta funkcijai analizinių funkcijų erdvėje

R. Kačinskaitė

Straipsnyje įrodoma daugiamatė diskrečioji ribinė teorema Matsumoto dzeta funkcijai tikimybinių matų silpno konvergavimo prasme analizinių funkcijų erdvėje.