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An estimate for the Taylor coefficients
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We examine the Taylor coefficients of an analytic in |z| < 1 function F'(z) having
a fairly particular form. Such functions appear frequently in analytic and probabilistic
combinatorics as generating functions of the values of mappings defined on assemblies,
multisets, selections or additive arithmetic semigroups (see [1-4], [6-8]).

Let

F(2):

ZmNzN Zbkz exp{za"’;J}

N20 k20 izl
= : H(z)exp {U(2)} =: H(2)G(z), 0))

where a;, b; € C. Typically, the function H(z) satisfies some smoothness conditions on
the circumference |z| = 1 and is "better" than U(z).
In the case H(2) = 1, formal expansion of the series leads to the formula

mN=mN(a’1r" ,G.N Z H(aj)jk'a (2)

L(k)=nij=1

where the summation is extended over vectors k = (k1, ..., k») with nonnegative integer
coordinates and satisfying the relation L(k) := 1k; + ... Nky = N. Given some initial
information on a;, it is rather difficult to use (2) to derive asymptotical properties of my
as N — oo. '

In [8], we have obtained a few estimates of my in terms of the Taylor coefficients
mpy of the function

D(z) := Zﬁznz" = exp{ Z ﬂ;—]} =: exp {V(2)},

n2>0 ji<N

provided that |a;| < dj < d < oo foreach 1 < j < N. This individual bound and a
rather strong requirement sup, <, |H'(2)| < H < oo were the main obstacles in some
applications of the results. An instance of them is presented at the end of the paper. We
now generalize Proposition 2 of our paper [8].

Theorem. Let a,b,d, and B be posi.tive constants such that |a;| < a,0 < d; < d,

S Ikl < B, lbjl<b, (3)

JSN
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and

I > clog % O]

&

PIR-E D DL

<EN j<6N sN<j<n J

with some ¢ > 0, C > 0, and arbitrary § € (0, 1]. Then there exists a positive constant
c1 = ¢i(c, d) such that

d; - d; — R(ajeits
mN<<exp{ A 1—c1 min -’——(‘lf——)}.
jev STieN J

The constant in <, the analog of the symbol O(-), depends on a, b, d, B, and C only.

REMARK. The appearance of the first sum under the exponent is natural. To verify this,
take a; = d; and assume the condition0 < do < dj < d. By Lemma 1 in [8] we have

meexp{Zdjj—l}

JSN

where the constants in < depend on do and d only.

Actually, in the estimate of my one can take

o= mln{(m—) (\/ch—l)/Zd} min{c?/4, c/2d}.

Note also that ¢ < d.
Difficulties arising in the case of functions with unbounded coefficients a; have been
discussed in author’s paper [6]. This article and remark [7] contain a few asymptotic

formulas for my obtained under more restrictive conditions than those used in Theorem
above.

Proof of Theorem. Without loss of generality, we may assume that a; = 0 and b; = 0
for j > N, nevertheless, even after this change, we leave the same notation of U(z) and
H(z).Let 0 < a, 6 < 1 be arbitrary fixed numbers, K = 6N > 1,

G 1 al J , G = {-— _a; J},
1(2) := exp {a Z F z } 2(2) := exp a Z ; z
iSK K<j<N

and G3(2) := G*(z) — G1(2).
By Cauchy’s formula

1 F'(2)
= g | T
|z]=1
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- 27r1iN / G'%(2)(H(2)U'(2) + H'(2))G1(2) j_;
lz|=1
* 27;N / G'™(2)(H(2)U'(2) + H'(2)) Ga(2) j_:l =J1+J2. (5)
lzl=1

We have
wx|61(2)| [ 10 (@)IGa(2) 14z
|z|]=1

ax|G1=2(2) / \H(2)/|Ga(2)] [d2] = Jo1 + Joa. (6)
|z|=1

|2l < 27rN||1

1
21rN||1

Further,

BD'-%(1)
2N

«(f |U'(z>|2|dz|)m( / IGa(Z)|2|d1|)1/2- @

|z]=1 |z]=1

I < exp {(1 - o) min (RU(¢") ~ V(1)) }

Since |a;| < a, by virtue of Parseval’s equality, the first integral on the right-hand side
does not exceed 2ma?N. For the second integral, we apply (2) to get

wo-2(, 2 M) %)

n>K 1ky+...4nkn=n j= 1
3;>K wuhk 21

The sum in the braces does not exceed g, defined via

> ga” —exp{ oy M} 00

n>0 <N
Hence by (4)
Ga(2)2]d2] < & S ‘()% |d
| 3(2)|* |dz| < '—22 —ﬁ |Q'(2)|" 12|
lzi= n21 |zi=1
27re20D2° 2ma2e26 D22(1
<O S e e T

Jj<N

Inserting these estimates of integrals into (7) we have

C
Jar < —gN—Ql exp {(1 - a) min (RU (") - V(1))}. ®)
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Similarly,

abe®D(1)

Jaz € N P {(1 -a) Irtrllgr (RU (™) - V(l))} )

The estimates (8) and (9) imply the satisfactory bound for J; in (6).
Investigating J;, we use the convolution arguments. Observe that

J1 = ‘]"v‘ Z gngabkaN—a n—k + N Z gnga(N —-8= n)bN-ﬂ-O'

n,s,kz20 n,s 20
nt+s+hkgN-1 n+sN-1

Here g, and §; are the s-th Taylor coefficients of G'~%(z) and G (z) respectively. Thus
by (4),

Z|g, exp < (1 - a)zl’l}<exp{1 a)C’+V(1))}

sKN { i<N

and

Exploiting the conditions of Theorem, we now obtain

|1 < Zlgn12|g.|2|bk|+—z|gn|Z|g.

n<N sKN k<N nN sKN
C . ca
< _______(aB+l;3,e 20 exp{ —a ) g1} < Cz————D(;),& , (10)
K<j<N J

where C; = (aB + b)eC.
Set C3 = max{C3, (a2B + ab)eC} and E = exp { minjy<(RU(e%*) — V(1)) }. 1t
follows from (5), (6), (7), (9), and (10) that

< GDQ) (B> .,
N < N ( 5 +6

provided that SN > 1. The choice

6= ma.x{ min {1, E=2)/(+ee)} -]lv}

gives the estimate

2C3D(1) ca(l—a) } 1 )
S-T(exp{——1+ca log E + e |- (09))
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The desire to have the first factor under the exponent as large as possible leads to the
choice & = (/1 + ¢ — 1)/c. Further, the conditions of Theorem yield e"24-C N—2¢
E < €. This enables us to get rid of the second term in (11). In this way we obtain

my < C"l—z(l)—(exp{min{(\/m— 1)2, (Vi+ec-1)/2d} logE}),

where C4 > 0 depends on C3, C, and d.
Theorem is proved.

An application. Let Fj be the set of all mappings 7 of an N set into itself, k; =
k;(7) be the number of the components in the functional digraph of 7,1 < j < N, and
f : Fn — C be a completely multiplicative function, maybe, depending on N or other
parameters. It has the following expression

N
fo =17, =1,
i=1
where f; € C. Assume that | f(7)| < 1. Then (see [1] or [8])

1+Z i Zf(r)—exp{i%z"},

TEFN j=1
where
Ao S L B
j=e gg—iﬁ-w, ||\

The last estimate has been proved in [5]. Applying Theorem with a; = A;f; and d; =
1/2 for each 1 < j < N and Stirling’s formula we obtain

1 - R(f;e)
S fr) ) }

TE€EFN

N—-N

< Csexp { — ¢o min
tl<
JsN

with absolute positive constants Cs and c;.
In its turn, this inequality could be used to estimate concentration of values of an

additive function defined on Fjy.
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Tayloro koeficienty jvertis
E. Manstavi¢ius

Darbe gautas analizinés vienetiniame skritulyje funkcijos, daZnai sutinkamos kombinatorikoje,
Tayloro koeficienty jvertis. Sie koeficientai iSrei¥kia atvaizdZiy, apibréZty ansambliuose, karto-
tinése svorinése aibése, adityviuose aritmetiniuose pusgrupiuose, reikimiy vidurkines savybes.



