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Uniform distribution on the four-dimensional
torus. II

Gintautas MISEVICIUS (VU)

In the first part of the paper [7] we stated theorem on the uniform distribution on the
four-dimensional torus and obtained some auxiliary results. We use the notation from [7].

Theorem. Let the surface T = {(z,y,2,w), 2z = ¢1(z,y),w = p2(z,9), (z,y) € Q}
have the non-zero curvatures (1) of components, and let the assumption K; - K2 > 0
hold. Moreover, let the characteristic polynomial of the matrix V' be irreducible over the
field of rational numbers with different real roots. Then for almost all points (z,y) € Q
with respect to the Lebesgue measure the set of vectors

{(:E, Y, ‘Pl(z’ Y), ‘P2($a y))V}, { (z’ ¥, p1(z, y)’ ‘P2(xs y))V2}, cee

is uniformly distributed on the unit cube [0,1)* of the space R*.

3. Proof of the Theorem

In this proof we make use the ideas of D. Moskvin, V. Dubrovin and V. Leonov.

We suppose that the modulus of eigenvalues of matrix V' are different, 61| > |62] >
|63] > |64], and Wi = (wi1, wiz, w3, wia) is eigenvector corresponding to eigenvalue
6;,i = 1,2,3,4. These vectors form the basis in R4, and therefore an arbitrary vector
# = (1, T2, T3, 74) € R* multiplied by the m-th degree of matrix V' may be expressed
in the form

4
V™ = E (v;l:z:l + vigT2 + V;3T3 + v.~4z4)0}"u')'.-.
k=1

Here v;;, are real numbers defined by the matrix V' and independent on m.
Let us introduce a linear form

L(Z) = vi1z1 + v12Z2 + v13T3 + V14%4. (12)

It follows from Lemma 5 of [7] that an inner product

4
Wy - M = E W1k Mk
j=1
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is not zero for any integers my. Therefore for the function

, des (2,9 01(2,9), p2(z,y)) Vit
f(z,y) = 67 (wy - ™)

we have the following representation

m
f(z,9) = L(z,y, p1(2,9), p2(z, 9)) + (0—2) hz.y) (13)
’ i ’ 0, wym
f(z,y) being bounded on Q with its mixed derivatives of the third order.
We examine three cases:
10 V13 # 0andv14 = Oorv13 = Oandv14 # 0;
20013 =014 =0;
30 V13 '7'é 0 and V14 # 0.
We begin with the case v14 # 0, v13 = 0. We choose in (13) a vector 77 in such a way
that

b2
61

1 <L
[ @y - | = Inm

, m>2 ’ (14)

This gives expression for the total curvature Ky of the surface z = f(z,y):

_ (01390,1,;2 + 014‘P,2,22)('013<P,1'y2 + ”14‘/’2{,,2) - (v13¢/1’zy + 'U14()0'2,:ty)2
- 2
(14 (v11 +v13h, + v1aps,)? + (V12 + visgh, +v1ah,)?)

. 0(1 1 )= : (v34(Pha2 5, — Pazy) 40 ( 1 )

nm 14+ (v11+v1405,)? +(v12 V1405, ) Inm

f

We note the boundedness of the derivatives 5, and @5, implies |K¢| > ¢, for suffi-
ciently large m. Thus, we can apply the statement.

Theorem C. Let z = f(z,y) be a continuous function on Q with bounded partial deri-

vatives of the third order. If the total curvature of the surface z = f(x,vy) is not zero, then
the following estimate is true:

I(n) = // exp {2rinf(z,y)} dedy = can~1/3,
Q

For the proof see [6]. Taking n = 67*(w, - 77t) and having in mind the relation (14),
we obtain

/ / exp{2migV™ . it} dzdy = cs (67 (i - 1)) "%, (15)
Q
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where é.: (11, Y1, ‘pl(xs y)a ‘p?(x’ y))
Applying Theorem 2 of W. Schmidt [9] we get that there exists a constant ¢4 > 0

such that for any fixed vector g = (g1, 02, - - -, 0s) and any non-zero integer vector 771 the
estimate
- C4
g > —— —
l /(’I’nl-7’Tl2-...-1’7‘L‘,)H'e

is valid. Here € > 0 depends only on c4 and My is defined by the relation

- 1 if mg =0,
M = |mg| if mg #£0.

This gives

!131 . 'ﬁ'll—l < ——(ﬁ”ll .. .ﬁl,)1+s,

Cs

where € > 0 is an arbitrary small number and £ = (¢, W) is sufficiently small. Hence in
view of (14)

1/(1+¢) m(l-¢;)

_ _ ce03" 6,

. e < X |7 )
M- Ms 67 Inm 05 (16)

and using (15), we get
. 1 .. .1, )(1+€)/3

// exp {2mi(7i - V™) } dzdy = S 9:/1;) . amn
Q 1

Let a function g(Z) € E§(c), a > 4/3. Then we have representation

©o

9(%) = //9(5) dz;...dzq + Z c(my'...ms) exp {27ri(1’7"1:1':')}.
Let po denote the Lebesgue measure in the plane. Hence we find
|[fo€m) dzu - @ [.. [ (@) o ..ame
Q Q4

+co >

m1...M, KA(M1T,)*

<cs Y (Mr...m,)""

m1...Mm,>A

) (18)

/ Q exp 2mi(m - V™) dzdy

where A = |6, /85|™(1=1), Now from Lemma 1 of [7] and (18) we deduce

Y. (m...m,)™"

my..Mms <A

/ / exp {2mi(7 - §V™)} dzdy
Q
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= cma'm/’ z (ﬁl]_ .. .’fha)_a+(l+€)/3 = 6110 rn./3.

The later estimate together with (17) and (18) yields

Z/g(ng)dxdy = p2(Q) /(-)-;/g(i‘) dz;...dzq + c12/6:|"™/3

m(l1-a)(1-e)

b , (19)

+ci3| 7 )

where 2 > 0 is arbitrarily small. This relation proves the theorem in the first case.
Now we consider the case v13 = v14 = 0. In this case we have the expression

f 1 (IE ) y)
f(z,y) = vz +vioy + <91) T
and the total curvature of the surface tends to zero when m — oo, therefore we can not
apply Theorem C. Therefore we will proceed in the following way. We denote w = 10 -7
and @ = wy3, 8 = vj2. Suppose that b # 0, because the linear form az + by is not
identically equal to zero. It is easy to check that

e Fom _ _cu 6"
//exp {2mi( - EV™)} dady = 7m0 (20)
Q
This gives for g € E$(c), a > 2,

J[ 96V dzy = 1@ [ fot@)izs .. dme
Q Q4

6" 1

+cl5< ol| mz:n |u71-m|(m1...m,)a>
= pg(Q) /.../g(x)dxl ...dzg +c16 fl , 21
Q4
and if g € Eg(c), a > 2, then
6,

//g(fV"‘) dzdy = / / (£)dz1 ... dTap2(Q) + c17(61]™™/3 + c18| = 5 (22)

Let 771 be a non-zero vector with integer components. It is sufficient to prove that

hrn Zexp {2mi(m - £V*)} =0 (23)
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almost everywhere with respect to the measure 2, and the assertion of the theorem fol-
lows from the Weyl criterion.
Let us define two vector functions

Cu(®) = Y cos2m(iit-ZV¥), Sa(&)= ) sin2n(m- V).

1<k<n 1<k<n

It is well known that if the function g(Z), £ € R, is periodic with the period one
with respect to every argument and has the derivatives of the fifth order bounded by the
constant ¢, theng € Eg 3(c), see [4].

The derivative of the function 77 - ZV* and these of sin 2(s7i - ZV'*) are bounded
by 63*. Therefore the mixed derivatives of the fifth order do not exceed c1963™, and for
|t| < +/n the function '

g9(Z) = exp {itn‘l/zs,.(:i')}

belongs to the class Eg /3 (), ¢ = 63™. Applying (22) to the latter function, we obtain, for

It < v/n,
= ——1 exp {itn~1/28, (V™
£6) = 5 [J p {itn=V/28,(6V™)} dzdy

/.../exp {itn—l/2sn(:i:‘)} dzr;...dzgq + czo(exp (% - 5n) ln|01|)
Qq
72

+exp{— (mln 2 —5n>}, 24)

61
where n = yom and v = 10" min(1/3,1n|6;/62]) > 0. We conclude that there exist
constants 0 < o < 1 and cp such that, for |t| < /o™,

from(t) = // exp {\/%_;Sm,(f)} dz;...dzs + co1 exp{—com}.  (25)
Q4

For the unit matrix Vy we obtain

/.../sin27r(ﬁ'z-a':‘)sin21r(1rﬁ.;;;‘Vm)dacl.__dx4
Q4
= %/./(COS 2”(7?& . f(‘/()-Vm))—COS 21!'(17’2. . f(‘fo_'_Vm))) dz,.. .dz4=0,
Q4

and there exist the limit

- 2
'}er;o/.../(s:/(;)) dz;...dzg =02 > 0. (26)
Qq \
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We deduce from one central limit theorem of V. Leonov [5] that the integral in the right
hand-side of (25) converges uniformly in finite intervals to the characteristic function
exp{—02t2/2} of the normal distribution as m — co. Also, we deduce from (25) that

Jim_foom(t) = exp{—0t?/2}, | @7)
because f.,m(t) is the characteristic function of the sum

(Yom) ™28 m (EV™). (28)

So we have
: Spom (EV)\ * (2k) o2
lim // (70_) drdy = —— - 12(Q)
m—oo JYom k! 22k ’
5 Yo

that is even moments of the sum (28) tend to the moments of the normal distribution with
the mean zero and the variance o2. From this we obtain that

/ S2k(£) dzdy = O(n* In* n), 29)
Q

and
/ / (Cn(8))* dedy = O(n* In* n), (30)
Q

asn — oo.

Finally we get for n — oo

J

2k
dzdy

n
> exp{2mim - £V}
k=1

- 0(22'= / / C2K(§) dady + 22 / / S2(8) dzdy) = O(nk In* ).
Q Q

This estimate proves (23) and together the theorem in the second case.

The proof in the third case can be obtained by combining the proofs of the first and
second cases. The case when the modulus of eigenvalues of matrix V' coincide needs a
slight modification of the proof.
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Tolygiis pasiskirstymai ant keturmacio toro. II

G. Misevidius

Irodoma teorema apie keturmatio toro dvimagiy pavirSiy transformacijy tolygy pasiskirstyma.
[rodymas remiasi D. Moskvin, V. Dubrovin [2] ir V. Leonov [5] idéjomis.



