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1. Introduction
Consider the decomposition of sequence of real numbers b, into two sequences:
bn = [ba] + {bn},

where [-] denotes the integer and {-} the fractional part of a real number. We call the
sequence b,, dense if for each infinite arithmetical progression A of natural numbers and
each interval J C [0; 1) the following two sets

{n:[ba) € A}, {n:{bn}eJ}

are infinite.

For example, the sequences na with 0 < a < 1 an irrational number are dense. It
may be proved, that if a,, is a sequence of positive numbers increasing unboundedly then
for almost all & > 0 the sequence ana is dense (cnf. [3]). We show that with such a
sequence of real numbers a,, the sequences a® are also dense for almost all o > 1.

In the theorem below ) stands for the Lebesque measure on the real line and v(A)
denotes the density of a set of natural numbers A (if it exists); for example, u{n n=
m (mod M)} = 4, where m, M are fixed natural numbers.

Theorem. Let a,, be a sequence of positive real numbers increasing to infinity, 0 < €, <
1 and

A, = [ > e,.] — 00, €pag" "TAm>1, (1)

m<n

where ag > 1 is some fixed number. Let I, and Ay, be two sequences of intervals in [0;1)
and arithmetical progressions respectively, such that \(I) > €n, V(An) 2 €n. Then for
almost all a > ag both sets

{n:[a®] € An}, {n:{a""}€ I} (2

are infinite.
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Let M > 1 be a natural number, €, = M~ for all n and ap > 1. Then for any
increasing sequence a, — oo the condition (1) is satisfied. Let w be a rational number,
€, < w < 1 — €,, and m an integer, such that 0 < m < M. Let the set L(w, m, M)
consists of all @ > ag for which both sets (2) are infinite with I,, = (w - €n,w + €n),
A, = {z: 2 =m (mod M)}. From the theorem we have that almost all a > oo belong
to L(w, m, M). Because

{a:a> ap,a* isdense} = ﬂ L(w,m, M),

w,m,M

then a®~ is dense for almost all & > a and then for almost all a > 1.

The theorem gives some quantitative characteristic of the denseness of almost all
sequences a®~. For an example, if a, = n”,v > 1, then €, = n~! may be chosen
in the theorem. If a,, = n” and 0 < 7 < 1, then (1) holds with €, = p, logn/nY with
an arbitrary sequence p, — 00.

2. Proof of the Theorem

For the proof we use the measure-theoretic arguments, explained in details, for example,
in [1]. Generally speaking, it is to be shown that for certain subsets B,, of an interval /
the set lim sup B, contains almost all a € I. This may be done in two steps: proving that
A(limsup B, N J) > 8A(J) for any subinterval J C I (with § > 0 independent of J)
and then using the Lebesque density theorem to conclude that the set lim sup B, contains
almost all & € I. The ready to use tool for proving our statements is the following
proposition.

Lemma ([2], Lemma 6.1, p.171). Let J be a subinterval of the real line and D,, be a
sequence of subsets of J. For each open interval I C J suppose that there is a sequence
of sets By, C Dy, NI such that

iz\(Bn)=+oo,
n=1
and
2 -1
imsup (3 28)) (T AB.0Bn) >80 o

ng<N m,nN

where 6 is a positive constant independent on I. Then almost all o € J belong to infinitely
many D,,.

Note, that some quantitative version of this result can be used (see [1], Theorem 3).
We prove only that the first set in (2) is infinite for almost all @ > . The arguments
for the second one are similar and the calculations are easier.
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Let A, = {z : 2 = ma(mod M)} and M;7! > €,.. Then

1 n—04n—-Ap
—M—;ag Gn-a > 1.

It is straightforward to derive that [a%"] € A, (that is [a®"] = mn(mod M,)) holds if
and only if there exists some natural number s such that

loga € I(n,s), I(n,s)= ai[log(sMn +my); log(sMn +ma +1)].

Hence [a®"] € A, holds for an infinite sequence of n if

loga € limsupD,,, D, = U I(n,s).
>0

We have to prove now that almost all a (a > ag, ao = log &) belong to lim sup Dy, Let
I =(a;a+b),a > aop,and

B, =Iﬂ(’L>J°I(n,s)).

It is necessary to show that the condition (3) of Lemma is satisfied. Because of a, — oo,
we may suppose that a,, > 1 for all n. For any interval I(n, s) we have

1 1 c1 c2
=— A < —=2—
A(I(n,9)) = -log (1 + 3, +m,.) and s M) <5 @

with some positive and absolute constants c,cz. For s # t the intervals I(n, s) and
I(n,t) are disjoint. Hence, we shall obtain the bound for A(B;) from below if we sum
all A(I(n, s)) such that I(n, s) C I. For the upper bound we have to sum all A(I(n, s))
with the condition I N I(n, s) # @. Let us establish the lower bound, the upper can be
obtained similarly.

The condition I(n, s) C I, or equivalently,

a< al log(sMy, + my,) < allog(sM,. +mp+1)<a+bd
n n

give the following range for s:

eletblan _m, —1
M,

e%n —m,

r(n) <s <R(n), r(n)=—p7/—" R(n) =

Observe that

R(n) —r(n) = e]M_n (ebem —1—e7%).
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Because of (1) we have M7 1e® > M, lag” > 1. Hence R(n) — r(n) > 1 and we
can estimate A(By) as follows:

R(n)
ds
MED> Y MmO Y $rra / .
r(n)<s<R(n) r(n)<s<R(n) (n)

Using the expressions for r(n) and R(n) we derive that

ABy) > S8 _ e

"2 M, M

Hence,

> ABn) > cad) Z——»oo, N — oco. )

ngN n<N
Arguing similarly we obtain the bound

1
A(Br) < esA(l) . (6)

Now we derive the upper bound for A(Bx N By,), where k < n. The set By consists of
the not-intersecting intervals I N I(k, t). It is easy to obtain that I N I(k, t) # & for

MZ (e —my — 1) <t < M (elet)ex —my). ©)
Fix t from this range and find the bound for

AI(kt)yNB) =Y AI(k,t) N I(n,8)) <Y ,{(z(n, s)),

>0

where the last sum is taken over those s, for which I(k,t) N I(n, s) # @. This condition
is satisfied if a; ! log(s My, +my) or a;; ! log(sM,, +my, + 1) belongs to I(k, t). We get
then the range a(n|k,t) < s < A(n|k, t) for s, where

a(nlk,t) = M'1 (M + my)ork —m, —1),
A(nlk, t) = M7 ((EMy + my + 1) —my,),

6.,k = an/ak. Then according to (4) we obtain

A(I(k,t)NB,) < L
GnMn k) <s<Amlkg ®
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We look for which k < n the sum can be estimated by an integral. Using the elementary
inequality (1 + z)® — 1 > 6z, valid forz > 0,6 > 1, in

_ (M i) 1\
A(n|k,t) — a(n|k,t) = A 1+ A 1

1
T (EMy + my) Ok ) '
we get

Onp(EMitme)’rtt 1 G (tMe )P
M" 'Mn % Mn '

A(n|k,t)—a(n|k,t) >

Put the lower bound for ¢ from (7) into the right-hand expression:

Ok (E My + my Okt S8 (€% — 1)0ni—1 S o8 e?(an—ax)
M, ik M, Z kT M,
QAp—0k QAn —Gjk
a a
> 70 k=2 > er—>
z CtUnk Mn z C7 Mn

According to (1) we have A(nlk,t) — a(n|k,t) > 1for ko < k < n — A,. For such
pairs of k < n we have

MI(k,8) N B,) < — / ds _ _cs Ak

The expression under the logarithm may be reduced to the form

A(nlk, t) 1 Or
—_a(n|k,t) =B (1+ ———-——th +mk) , 1< B<eco.

Using now the elementary inequality log(Bu) < Blogu (B > 1) we get

On i 1 _1 1

The range for ¢ is given in (7). It is straightforward to obtain

A
Man !

ABrNB,) <enn logeb“" =en

1
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this holds for ko < k < n — A,,. We shall use this inequality for kg < k£ <n — Ay. For
k not in this range we use the bound (6): A\(Bx N By,) < A(B,) < cs%{l. Now we have

N N
Y ABNB)<Y Y MBNB)+) > ABnBy)

kSN 1=1 kelkoI-An] I=T ketvo oan)
<) Y g tAD (ko + vy < A(I)( > ) ®
1<k<igN R =1 ! neN "

It follows now from (5) and (8), that the condition (3) of Lemma is satisfied. Hence the
first set in (2) is infinite for almost all & > ap. As it was mentioned above the statement
about the second set can be proved similarly.
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Sveikosios ir trupmeninés tam tikry seky dalys

V. Stakénas

Darbe nagrinéjamos natiiraliyjy skai¢iy sekos a®" &iaan > 0, a > 1. [rodytoje teoremoje tvir-
tinama, kad esant tam tikroms salygoms skaitiai [«*"] tenkina lyginius [a®"] = m, (mod M,)
be galo daug karty su beveik visais a > 1. Taip pat suformuluotas teiginys apie trupmenines Siy
seky dalis. .



