On integer and fractional parts of some sequences

Vilius STAKĖNAS (VU)

e-mail: vilius.stakenas@maf.vu.lt

1. Introduction

Consider the decomposition of sequence of real numbers b_n into two sequences:

$$b_n = [b_n] + \{b_n\},\,$$

where $[\cdot]$ denotes the integer and $\{\cdot\}$ the fractional part of a real number. We call the sequence b_n dense if for each infinite arithmetical progression A of natural numbers and each interval $J \subset [0; 1)$ the following two sets

$${n:[b_n]\in A}, {n:\{b_n\}\in J}$$

are infinite.

For example, the sequences $n\alpha$ with $0 < \alpha < 1$ an irrational number are dense. It may be proved, that if a_n is a sequence of positive numbers increasing unboundedly then for almost all $\alpha > 0$ the sequence $a_n\alpha$ is dense (cnf. [3]). We show that with such a sequence of real numbers a_n the sequences α^{a_n} are also dense for almost all $\alpha > 1$.

In the theorem below λ stands for the Lebesque measure on the real line and $\nu(A)$ denotes the density of a set of natural numbers A (if it exists); for example, $\nu\{n:n\equiv m\ (\mathrm{mod}\ M)\}=\frac{1}{M}$, where m,M are fixed natural numbers.

Theorem. Let a_n be a sequence of positive real numbers increasing to infinity, $0 < \epsilon_n < 1$ and

$$\Delta_n = \left[\sum_{m \le n} \epsilon_n\right] \to \infty, \quad \epsilon_n \alpha_0^{a_n - a_{n - \Delta_n}} \gg 1, \tag{1}$$

where $\alpha_0 > 1$ is some fixed number. Let I_n and A_n be two sequences of intervals in [0; 1) and arithmetical progressions respectively, such that $\lambda(I_n) \geqslant \epsilon_n$, $\nu(A_n) \geqslant \epsilon_n$. Then for almost all $\alpha > \alpha_0$ both sets

$$\{n: [\alpha^{a_n}] \in A_n\}, \quad \{n: \{\alpha^{a_n}\} \in I_n\}$$
 (2)

are infinite.

120 V. Stakėnas

Let M>1 be a natural number, $\epsilon_n=M^{-1}$ for all n and $\alpha_0>1$. Then for any increasing sequence $\alpha_n\to\infty$ the condition (1) is satisfied. Let ω be a rational number, $\epsilon_n<\omega<1-\epsilon_n$, and m an integer, such that $0\leqslant m< M$. Let the set $L(\omega,m,M)$ consists of all $\alpha>\alpha_0$ for which both sets (2) are infinite with $I_n=(\omega-\epsilon_n,\omega+\epsilon_n)$, $A_n=\{x:x\equiv m\ (\mathrm{mod}\ M)\}$. From the theorem we have that almost all $\alpha>\alpha_0$ belong to $L(\omega,m,M)$. Because

$$\{\alpha:\alpha>\alpha_0,\alpha^{a_n} \text{is dense}\}=\bigcap_{\omega,m,M}L(\omega,m,M),$$

then α^{a_n} is dense for almost all $\alpha > \alpha_0$ and then for almost all $\alpha > 1$.

The theorem gives some quantitative characteristic of the denseness of almost all sequences α^{a_n} . For an example, if $a_n = n^{\gamma}$, $\gamma \ge 1$, then $\epsilon_n = n^{-1}$ may be chosen in the theorem. If $a_n = n^{\gamma}$ and $0 < \gamma < 1$, then (1) holds with $\epsilon_n = \rho_n \log n/n^{\gamma}$ with an arbitrary sequence $\rho_n \to \infty$.

2. Proof of the Theorem

For the proof we use the measure-theoretic arguments, explained in details, for example, in [1]. Generally speaking, it is to be shown that for certain subsets \mathcal{B}_n of an interval I the set $\limsup \mathcal{B}_n$ contains almost all $\alpha \in I$. This may be done in two steps: proving that $\lambda(\limsup \mathcal{B}_n \cap J) > \delta\lambda(J)$ for any subinterval $J \subset I$ (with $\delta > 0$ independent of J) and then using the Lebesque density theorem to conclude that the set $\limsup \mathcal{B}_n$ contains almost all $\alpha \in I$. The ready to use tool for proving our statements is the following proposition.

Lemma ([2], Lemma 6.1, p.171). Let J be a subinterval of the real line and \mathcal{D}_n be a sequence of subsets of J. For each open interval $I \subset J$ suppose that there is a sequence of sets $\mathcal{B}_n \subset \mathcal{D}_n \cap I$ such that

$$\sum_{n=1}^{\infty} \lambda(\mathcal{B}_n) = +\infty,$$

and

$$\limsup_{N \to \infty} \left(\sum_{n \leq N} \lambda(\mathcal{B}_n) \right)^2 \left(\sum_{m,n \leq N} \lambda(\mathcal{B}_n \cap \mathcal{B}_m) \right)^{-1} \geqslant \delta \lambda(I), \tag{3}$$

where δ is a positive constant independent on I. Then almost all $\alpha \in J$ belong to infinitely many \mathcal{D}_n .

Note, that some quantitative version of this result can be used (see [1], Theorem 3). We prove only that the first set in (2) is infinite for almost all $\alpha > \alpha_0$. The arguments for the second one are similar and the calculations are easier.

Let $A_n = \{x : x \equiv m_n \pmod{M_n}\}$ and $M_n^{-1} \geqslant \epsilon_n$. Then

$$\frac{1}{M_n}\alpha_0^{a_n-a_{n-\Delta_n}}\gg 1.$$

It is straightforward to derive that $[\alpha^{a_n}] \in A_n$ (that is $[\alpha^{a_n}] \equiv m_n \pmod{M_n}$) holds if and only if there exists some natural number s such that

$$\log \alpha \in I(n,s), \quad I(n,s) = \frac{1}{a_n} \left[\log(sM_n + m_n); \log(sM_n + m_n + 1) \right].$$

Hence $[\alpha^{a_n}] \in A_n$ holds for an infinite sequence of n if

$$\log \alpha \in \limsup \mathcal{D}_n, \quad \mathcal{D}_n = \bigcup_{s>0} I(n,s).$$

We have to prove now that almost all α ($\alpha > a_0, a_0 = \log \alpha_0$) belong to $\limsup \mathcal{D}_n$. Let $I = (a; a + b), a > a_0$, and

$$\mathcal{B}_n = I \bigcap \bigg(\bigcup_{s>0} I(n,s)\bigg).$$

It is necessary to show that the condition (3) of Lemma is satisfied. Because of $a_n \to \infty$, we may suppose that $a_n > 1$ for all n. For any interval I(n, s) we have

$$\lambda\big(I(n,s)\big) = \frac{1}{a_n}\log\left(1 + \frac{1}{sM_n + m_n}\right) \text{ and } \frac{c_1}{a_nM_ns} \leqslant \lambda\big(I(n,s)\big) \leqslant \frac{c_2}{a_nM_ns} \tag{4}$$

with some positive and absolute constants c_1, c_2 . For $s \neq t$ the intervals I(n, s) and I(n, t) are disjoint. Hence, we shall obtain the bound for $\lambda(\mathcal{B}_n)$ from below if we sum all $\lambda(I(n, s))$ such that $I(n, s) \subset I$. For the upper bound we have to sum all $\lambda(I(n, s))$ with the condition $I \cap I(n, s) \neq \emptyset$. Let us establish the lower bound, the upper can be obtained similarly.

The condition $I(n, s) \subset I$, or equivalently,

$$a < \frac{1}{a_n} \log(sM_n + m_n) < \frac{1}{a_n} \log(sM_n + m_n + 1) < a + b$$

give the following range for s:

$$r(n) < s < R(n), \quad r(n) = \frac{e^{aa_n} - m_n}{M_n}, \quad R(n) = \frac{e^{(a+b)a_n} - m_n - 1}{M_n}.$$

Observe that

$$R(n) - r(n) = \frac{e^{aa_n}}{M_n} (e^{ba_n} - 1 - e^{-aa_n}).$$

Because of (1) we have $M_n^{-1}e^{aa_n} > M_n^{-1}\alpha_0^{a_n} \gg 1$. Hence $R(n) - r(n) \gg 1$ and we can estimate $\lambda(\mathcal{B}_n)$ as follows:

$$\lambda(\mathcal{B}_n) \geqslant \sum_{r(n) < s < R(n)} \lambda(I(n,s)) \geqslant \frac{c_1}{a_n M_n} \sum_{r(n) < s < R(n)} \frac{1}{s} \geqslant \frac{c_3}{a_n M_n} \int_{r(n)}^{R(n)} \frac{\mathrm{d}s}{s}.$$

Using the expressions for r(n) and R(n) we derive that

$$\lambda(\mathcal{B}_n) \geqslant \frac{c_4 b a_n}{a_n M_n} = c_4 \lambda(I) \frac{1}{M_n}.$$

Hence,

$$\sum_{n \le N} \lambda(\mathcal{B}_n) \geqslant c_4 \lambda(I) \sum_{n \le N} \frac{1}{M_n} \to \infty, \quad N \to \infty.$$
 (5)

Arguing similarly we obtain the bound

$$\lambda(\mathcal{B}_n) \leqslant c_5 \lambda(I) \frac{1}{M_n}. \tag{6}$$

Now we derive the upper bound for $\lambda(\mathcal{B}_k \cap \mathcal{B}_n)$, where k < n. The set \mathcal{B}_k consists of the not-intersecting intervals $I \cap I(k,t)$. It is easy to obtain that $I \cap I(k,t) \neq \emptyset$ for

$$M_k^{-1} \left(e^{aa_k} - m_k - 1 \right) < t < M_k^{-1} \left(e^{(a+b)a_k} - m_k \right). \tag{7}$$

Fix t from this range and find the bound for

$$\lambda \big(I(k,t) \cap \mathcal{B}_n \big) = \sum_{s>0} \lambda \big(I(k,t) \cap I(n,s) \big) \leqslant \sum \lambda \big(I(n,s) \big),$$

where the last sum is taken over those s, for which $I(k,t) \cap I(n,s) \neq \emptyset$. This condition is satisfied if $a_n^{-1} \log(sM_n + m_n)$ or $a_n^{-1} \log(sM_n + m_n + 1)$ belongs to I(k,t). We get then the range a(n|k,t) < s < A(n|k,t) for s, where

$$a(n|k,t) = M_n^{-1} ((tM_k + m_k)^{\theta_{n,k}} - m_n - 1),$$

$$A(n|k,t) = M_n^{-1} ((tM_k + m_k + 1)^{\theta_{n,k}} - m_n),$$

 $\theta_{n,k} = a_n/a_k$. Then according to (4) we obtain

$$\lambda (I(k,t) \cap \mathcal{B}_n) \leqslant \frac{c_2}{a_n M_n} \sum_{a(n|k,t) < s < A(n|k,t)} \frac{1}{s}.$$

We look for which k < n the sum can be estimated by an integral. Using the elementary inequality $(1+x)^{\theta} - 1 > \theta x$, valid for $x \ge 0, \theta > 1$, in

$$A(n|k,t) - a(n|k,t) = \frac{(tM_k + m_k)^{\theta_{n,k}}}{M_n} \left(\left(1 + \frac{1}{tM_k + m_k} \right)^{\theta_{n,k}} - 1 - \frac{1}{(tM_k + m_k)^{\theta_{n,k}}} \right),$$

we get

$$A(n|k,t) - a(n|k,t) > \frac{\theta_{n,k}(tM_k + m_k)^{\theta_{n,k} - 1}}{M_n} - \frac{1}{M_n} > c_6 \frac{\theta_{n,k}(tM_k + m_k)^{\theta_{n,k} - 1}}{M_n}.$$

Put the lower bound for t from (7) into the right-hand expression:

$$\begin{split} \frac{\theta_{n,k}(tM_k+m_k)^{\theta_{n,k}-1}}{M_n} &> \theta_{n,k}\frac{(e^{aa_k}-1)^{\theta_{n,k}-1}}{M_n} \geqslant c_7\theta_{n,k}\frac{e^{a(a_n-a_k)}}{M_n} \\ &\geqslant c_7\theta_{n,k}\frac{\alpha_0^{a_n-a_k}}{M_n} \geqslant c_7\frac{\alpha_0^{a_n-a_k}}{M_n}. \end{split}$$

According to (1) we have $A(n|k,t) - a(n|k,t) \gg 1$ for $k_0 \leqslant k < n - \Delta_n$. For such pairs of k < n we have

$$\lambda(I(k,t)\cap\mathcal{B}_n)\leqslant \frac{c_8}{a_nM_n}\int_{a(n|k,t)}^{A(n|k,t)}\frac{\mathrm{d}s}{s}=\frac{c_8}{a_nM_n}\log\frac{A(n|k,t)}{a(n|k,t)}.$$

The expression under the logarithm may be reduced to the form

$$\frac{A(n|k,t)}{a(n|k,t)} = B\left(1 + \frac{1}{tM_k + m_k}\right)^{\theta_{n,k}}, \quad 1 < B < c_9.$$

Using now the elementary inequality $log(Bu) < B log u \ (B > 1)$ we get

$$\lambda \left(I(k,t) \cap \mathcal{B}_n \right) \leqslant c_{10} \frac{\theta_{n,k}}{a_n M_n} \log \left(1 + \frac{1}{t M_k + m_k} \right) \leqslant c_{10} \frac{1}{M_k M_n a_k} \frac{1}{t}.$$

The range for t is given in (7). It is straightforward to obtain

$$\lambda(\mathcal{B}_k \cap \mathcal{B}_n) \leqslant c_{11} \frac{1}{a_k M_k M_n} \log e^{ba_k} = c_{11} \frac{\lambda(I)}{M_k M_n};$$

124 V. Stakènas

this holds for $k_0 < k < n - \Delta_n$. We shall use this inequality for $k_0 < k < n - \Delta_N$. For k not in this range we use the bound (6): $\lambda(\mathcal{B}_k \cap \mathcal{B}_n) \leqslant \lambda(\mathcal{B}_n) \leqslant c_5 \frac{\lambda(I)}{M}$. Now we have

$$\sum_{k,l\leqslant N} \lambda(\mathcal{B}_k\cap\mathcal{B}_l) \ll \sum_{l=1}^N \sum_{k\in [k_0,l-\Delta_N]} \lambda(\mathcal{B}_k\cap\mathcal{B}_l) + \sum_{l=1}^N \sum_{k\notin [k_0,l-\Delta_N]\atop k\leqslant l} \lambda(\mathcal{B}_k\cap\mathcal{B}_l)$$

$$\ll \lambda(I) \sum_{1 \leqslant k \leqslant l \leqslant N} \frac{1}{M_k M_l} + \lambda(I) \sum_{l=1}^{N} (k_0 + \Delta_N) \frac{1}{M_l} \ll \lambda(I) \left(\sum_{n \leqslant N} \frac{1}{M_n} \right)^2.$$
 (8)

It follows now from (5) and (8), that the condition (3) of Lemma is satisfied. Hence the first set in (2) is infinite for almost all $\alpha > \alpha_0$. As it was mentioned above the statement about the second set can be proved similarly.

References

- [1] G. Harman, Variants of the second Borel-Cantelli lemma and their applications in metric number theory, In: Number Theory, Trends in Math, Birkhäuser, 121–140 (2000).
- [2] G. Harman, Metric Number Theory, Clarendon Press, Oxford, (1998).
- [3] V. Stakėnas, On integer parts of some sequences, Liet. Matem. Rink., 40 (spec. nr.), Vilnius, MII, 76–80 (2000).

Sveikosios ir trupmeninės tam tikrų sekų dalys

V. Stakėnas

Darbe nagrinėjamos natūraliųjų skaičių sekos α^{a_n} čia $a_n > 0$, $\alpha > 1$. Irodytoje teoremoje tvirtinama, kad esant tam tikroms sąlygoms skaičiai $[\alpha^{a_n}]$ tenkina lyginius $[\alpha^{a_n}] \equiv m_n \pmod{M_n}$ be galo daug kartų su beveik visais $\alpha > 1$. Taip pat suformuluotas teiginys apie trupmenines šių sekų dalis.