On approximation of stochastic integral equations driven by continuous p-semimartingales

Kestutis KUBILIUS (MII, VGTU)

e-mail: kubilius@ktl.mii.lt

Introduction

Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbf{P})$, $\mathbb{F} = \{\mathcal{F}_t, t \ge 0\}$, be a stochastic basis satisfying the usual conditions and let a standard Brownian motion W and a fractional Brownian motion (fBm) B^H , with the Hurst index 1/2 < H < 1, be \mathbb{F} -adapted.

A fBm with the Hurst index 0 < H < 1 is a centered Gaussian process $X = \{X_t, t \ge 0\}$ with $X_0 = 0$ and with the covariance

$$Cov(X_t, X_s) = \frac{1}{2} Var(X_1)(t^{2H} + s^{2H} - |t - s|^{2H}),$$

for all $t, s \ge 0$. If $Var(X_1) = 1$, we write $X = B^H$. The case H = 1/2 corresponds to the standard Brownian motion.

Consider the equation

$$X_{t} = \xi + \int_{0}^{t} f(X_{s}) dZ_{s} + \frac{1}{2} \int_{0}^{t} ff'(X_{s}) ds, \quad t \in [0, T],$$
 (1)

where $Z = W + B^H$, 1/2 < H < 1. For short, we shall write $ff'(X_s)$ instead of $f(X_s)f'(X_s)$.

If $f \in \mathbb{C}_b^2$ then there exists a unique adapted solution of the equation (1) having almost all sample paths in the space $CW_q([0,T])$, 2 < q < 1/(1-H), where $CW_q([0,T])$ is the class of all continuous functions defined on [0,T] with a bounded q-variation. This result one can easily obtain from [4,6]. (For definitions see [4,6].)

Let $\varkappa^n = \{t_k^n : 0 \le k \le m(n)\}$ be a sequence of partitions of the interval [0,T], i.e., $0 = t_0^n < t_1^n < \cdots < t_{m(n)}^n = T$, such that $\delta_n = \max_i |t_{i+1}^n - t_i^n|$ tends to 0 as $n \to +\infty$.

Let \mathbb{Z}^n be a sequence of linear approximations of a process \mathbb{Z} , i.e.,

$$Z^{n}(t) = Z(t_{k-1}^{n}) + \frac{t - t_{k-1}^{n}}{t_{k}^{n} - t_{k-1}^{n}} \left(Z(t_{k}^{n}) - Z(t_{k-1}^{n}) \right),$$

for $t \in [t_{k-1}^n, t_k^n]$, $n \in \mathbb{N}$, $1 \le k \le m(n)$. Note that for any n process \mathbb{Z}^n has bounded variation.

166 K. Kubilius

For partition \varkappa^n define $\rho^n(t) = \max\{t_k^n \colon t_k^n \leqslant t\}$ and $r^n(t) = \max\{k \colon t_k^n \leqslant t\}$, $t \in [0,T]$. For every $x \in D([0,T]) := D([0,T],\mathbb{R})$ the sequence $\{x^{\varkappa^n}\}$ denotes the following discretizations of x:

$$x_t^{\varkappa^n} = x(t_k^n)$$
 for $t \in [t_k^n, t_{k+1}^n)$, $0 \leqslant k \leqslant m(n)$, $n \in \mathbb{N}$.

Define the approximation

$$X_{t}^{n} = \xi + \int_{0}^{t} f(X_{s-}^{n}) dZ_{s}^{\varkappa^{n}} + \frac{1}{2} \int_{0}^{t} ff'(X_{s-}^{n}) d[Z^{\varkappa^{n}}]_{s}, \quad t \in [0, T], \ n \in \mathbb{N}. \quad (2)$$

If f is locally Lipschitz continuous and satisfies linear growth condition then for every $n \in \mathbb{N}$ there exists a unique strong solution to

$$Y^{n}(t) = \xi + \int_{0}^{t} f(Y_{s}^{n}) dZ_{s}^{n}, \quad t \in [0, T], \ n \in \mathbb{N}.$$

$$(3)$$

Now we formulate our results.

Theorem 1. Let $f \in \mathbb{C}_b^2$. Then

$$(X^n, W^{\varkappa^n}, B^{H, \varkappa^n}) \xrightarrow{D} (X, W, B^H)$$
 as $n \to \infty$,

where X is the unique solution of the equation (1). By \xrightarrow{D} we denote the weak convergence of corresponding probability measures on $D([0,T],\mathbb{R}^3)$.

Theorem 2. Assume that X is a solution of (1) and $\{Y^n\}$ is a sequence of solutions of (3). Then

$$\sup_{t \le T} \left| Y^n(t) - X(t) \right| \stackrel{P}{\longrightarrow} 0, \quad \text{as } n \to \infty.$$

1. Auxiliary results and proofs

Since almost all sample paths of the processes B^H , $1/2 \leqslant H < 1$, are Hölder continuous then

$$V_r(B^H; [s, t]) := v_r^{1/r}(B^H; [s, t]) \leqslant L^{H, 1/r}(t - s)^{1/r}, \tag{4}$$

where $v_r(B^H; [s, t])$ is the r-variation of the B^H , s < t, r > 1/H,

$$L^{H,\gamma} = \sup_{s \neq t \atop s, t \leq T} \frac{\left| B_t^H - B_s^H \right|}{|t - s|^{\gamma}}, \quad 0 < \gamma < H, \quad \mathbf{E} \left(L^{H,\gamma} \right)^k < \infty, \quad \forall \ k \geqslant 1.$$

Any local martingale is locally of bounded q-variation for each q>2. Moreover, for q>2 and $0< r\leqslant 2$ there are a finite constants $K_{q,r}$, ℓ_r such that for continuous martingale $M=\{M(t), 0\leqslant t\leqslant T\}$

$$\mathbf{E}\big\{v_q\big(M;[0,T]\big)\big\}^{r/q} \leqslant K_{q,r}\mathbf{E}\Big\{\sup_{0\leqslant t\leqslant T}\big|M(t)\big|\Big\}^r \leqslant K_{q,r}\ell_r\mathbf{E}\big\{\langle M\rangle_T\big\}^{r/2}. \tag{5}$$

Lemma 3 (see [3, 5]). Let $\{M^n\}$, $\{A^n\}$, and $\{\tilde{X}^n\}$ be a sequences of cadlag \mathbb{F}^n adapted processes, where M^n is a local martingale, A^n is a process with p-bounded variation, $1 , <math>\tilde{X}^n$ is a process with q-bounded variation, q > 2, $q^{-1} + p^{-1} > 1$. Assume that

$$\sup_{n} \mathbf{E} \sup_{t \leqslant T} \left| \Delta M_{t}^{n} \right| < +\infty,$$

 $\{V_p(A^n;[0,T])\}, n \in \mathbb{N}, and \{V_q(\widetilde{X}^n;[0,T])\}, n \in \mathbb{N}, are tight in \mathbb{R}.$ If

$$(\widetilde{X}^n, M^n, A^n) \xrightarrow{D} (\widetilde{X}, M, A)$$
 in $D([0, T], \mathbb{R}^3)$,

where \widetilde{X} , M and A are continuous processes, then M is a local martingale adapted to the natural filtration \mathbb{G} generated by (\widetilde{X}, M, A) , A is a process of p-bounded variation adapted to \mathbb{G} , and

$$\left(\widetilde{X}^{n}, M^{n}, A^{n}, \int_{0}^{\cdot} \widetilde{X}_{s-}^{n} dM_{s}^{n}, \int_{0}^{\cdot} \widetilde{X}_{s-}^{n} dA_{s}^{n}\right)$$

$$\stackrel{D}{\longrightarrow} \left(\widetilde{X}, M, A, \int_{0}^{\cdot} \widetilde{X}_{s} dM_{s}, \int_{0}^{\cdot} \widetilde{X}_{s} dA_{s}\right)$$
(6)

in $D([0,T],\mathbb{R}^5)$.

Define the approximation

$$\widehat{X}_{t}^{n} = \xi + \int_{0}^{t} f(\widehat{X}_{s}^{n,\varkappa^{n}}) dZ_{s} + \frac{1}{2} \int_{0}^{t} f f'(\widehat{X}_{s}^{n,\varkappa^{n}}) ds, \quad t \in [0,T], \ n \in \mathbb{N}.$$
 (7)

Lemma 4. Let $f \in \mathbb{C}^1_b$. Then the sequence $\{\widehat{X}^n\}$ is tight in C([0,T]).

Proof. Let q > 2, p > 1/H, and $q^{-1} + p^{-1} > 1$. First we note that

$$\mathbf{E}V_{q}^{2r}(\widehat{X}^{n};[0,T]) \leq 4^{2r-1} \frac{1}{(1-\alpha)^{2r}} \left(K_{q,2r} \ell_{2r} |f|_{\infty}^{2r} T^{r} + |f|_{\infty}^{2r} |f'|_{\infty}^{2r} T^{2r} + C_{p,q/\alpha}^{2r} |f|_{\infty}^{2r} \mathbf{E}V_{p}^{2r} (B^{H};[0,T]) \right) + 4^{2r-1} \mathbf{E} \left(C_{p,q/\alpha} |f|_{\alpha} V_{p} (B^{H};[0,T]) \right)^{2r/(1-\alpha)}.$$
(8)

The proof is similar as in Lemma 1 [6].

Now we prove the tightness of the sequence $\{\widehat{X}^n\}$.

At first we will show that there exists an nondecreasing continuous function F and $\beta > 1$ such that for any $s, t \in [0, T]$, s < t, t - s < 1,

$$\mathbf{E} |\widehat{X}_t^n - \widehat{X}_s^n|^4 \leqslant |F(t) - F(s)|^{\beta}.$$

By the Love-Young inequality (see [4]), the inequality (4), and Lemma 4.11 [7] we get

$$\begin{split} \mathbf{E} \big| \widehat{X}_{t}^{n} - \widehat{X}_{s}^{n} \big|^{4} &\leq 3^{3} \cdot 36 |f|_{\infty}^{4} (t - s)^{2} \\ &+ 3^{3} C_{p,q}^{4} \mathbf{E} V_{q,\infty}^{4} \big(f(\widehat{X}^{n,\varkappa^{n}}; [0, T] \big) V_{p}^{4} \big(B^{H}; [s, t] \big) \\ &+ 3^{3} \cdot 2^{-4} |f|_{\infty}^{4} |f'|_{\infty}^{4} (t - s)^{4} \leq C (t - s)^{2}, \end{split}$$

where C is the constant not depending on n. Thus by Theorem 12.3 in [1] we get the tightness of the sequence $\{\widehat{X}^n\}$ in the space C([0,T]).

Lemma 5. Let $f \in \mathbb{C}^1_b$. Then the sequence $\{X^n\}$ is tight in D([0,T]).

Proof. Since
$$X^n(t_i^n) = \widehat{X}^n(t_i^n)$$
 for $1 \le i \le m(n)$ then

$$\begin{split} \sup_{t \leq T} \left| X_{t}^{n} - \widehat{X}_{t}^{n} \right| &\leq |f|_{\infty} \sup_{t \leq T} \left| Z(t) - Z^{\kappa^{n}}(t) \right| \\ &+ |f|_{\infty} |f'|_{\infty} \sum_{i=1}^{m(n)} \left| W(t_{i}^{n}) - W(t_{i-1}^{n}) \right| \cdot \left| B^{H}(t_{i}^{n}) - B^{H}(t_{i-1}^{n}) \right| \\ &+ |f|_{\infty} |f'|_{\infty} \sum_{i=1}^{m(n)} \left| B^{H}(t_{i}^{n}) - B^{H}(t_{i-1}^{n}) \right|^{2} + |f|_{\infty} |f'|_{\infty} \delta_{n} \\ &+ \sup_{t \leq T} \left| \sum_{i=1}^{r^{n}(t)} ff'(\widehat{X}^{n}(t_{i-1}^{n})) \left[\left(W(t_{i}^{n}) - W(t_{i-1}^{n}) \right)_{\cdot}^{2} - \left(t_{i}^{n} - t_{i-1}^{n} \right) \right] \right| = \sum_{i=1}^{5} I_{i}. \end{split}$$

We may assume, without loss of generality, that $\delta_n < 1$. Note that

$$\mathbf{E} \sup_{t \le T} |Z_t - Z_t^{\varkappa^n}| \le \mathbf{E} \{ L^{1/2, 1/q} + L^{H, 1/p} \} \delta_n^{1/q},$$

where q > 2, p > 1/H, and $q^{-1} + p^{-1} > 1$. Further

$$\mathbf{E}I_2 \leqslant C|f|_{\infty}|f'|_{\infty}T\delta_n^{H-1/2}, \quad \mathbf{E}I_3 \leqslant |f|_{\infty}|f'|_{\infty}T\delta_n^{2H-1}.$$

By the Doob inequality

$$\mathbf{E}I_{5}^{2} \leqslant 4|f|_{\infty}^{2}|f'|_{\infty}^{2}\sum_{i=1}^{m(n)}\mathbf{E}\Big[\big(W(t_{i}^{n})-W(t_{i-1}^{n})\big)^{2}-\big(t_{i}^{n}-t_{i-1}^{n}\big)\Big]^{2}$$

$$\leqslant 4CT|f|_{\infty}^{2}|f'|_{\infty}^{2}\delta_{n}.$$

Therefore $\mathbf{E}\sup_{t\leqslant T}\left|X^n_t-\widehat{X}^n_t\right|\longrightarrow 0$, as $n\to\infty$. By Lemma 4 we have that the sequence $\{\widehat{X}^n\}$ is tight. Thus by Lemma 3.31 in Section 6 in [2] we obtain that the sequence $\{X^n\}$ is tight.

Proof of Theorem 1. Define $M^n=W^{\varkappa^n}$ and $A^n=B^{H,\varkappa^n}$. The process (M^n,\mathbb{F}^n) is a martingale, where $\mathbb{F}^n=(\mathcal{F}_{\rho^n(t)})$. The process A^n has bounded p-variation since $V_p(A^n;[0,T])\leqslant V_p(B^H;[0,T])$. Note that $M^n\to W$ a.s. and $A^n\to B^H$ a.s. in C([0,T]). Moreover,

$$\sup_{t \le T} \left| [M^n]_t - t \right| \xrightarrow{P} 0, \quad n \to \infty,$$

where

$$[M^n]_t = \sum_{k=1}^{m(n)} (W(t_k^n \wedge t) - W(t_{k-1}^n \wedge t))^2.$$

By Lemma 5, by Corollary 3.33 in Section 6 in [2], and facts obtained above it follows that the sequence $\{(X^n, M^n, A^n, [M^n], \xi)\}$ is C-tight. Thus from every subsequence $\{n'\} \subset \{n\}$ we can choose a further subsequence $\{n''\}$ such that

$$(X^{n''}, M^{n''}, A^{n''}, [M^{n''}], \xi) \xrightarrow{D} (X^{\infty}, M^{\infty}, A^{\infty}, [M^{\infty}], \xi^{\infty}),$$

as $n'' \to \infty$, where $(X^{\infty}, M^{\infty}, A^{\infty}, [M^{\infty}], \xi^{\infty})$ is defined on some probability space $(\overline{\Omega}, \overline{\mathcal{F}}, \overline{\mathbf{P}})$ and $\mathcal{L}(\xi^{\infty}, M^{\infty}, [M^{\infty}], A^{\infty}) = \mathcal{L}(\xi, W, [W], B^H)$. Since

$$\sup_{t\leq T}\left|[Z^{\varkappa^{n''}}]_t-[M^{n''}]_t\right|\stackrel{P}{\longrightarrow} 0,$$

as $n'' \to \infty$, and functions f and ff' are continuous, then by the continuous mapping theorem

$$(X^{n''}, f(X^{n''}), ff'(X^{n''}), M^{n''}, A^{n''}, [Z^{\varkappa^{n''}}], \xi)$$

$$\xrightarrow{D} (X^{\infty}, f(X^{\infty}), ff'(X^{\infty}), M^{\infty}, A^{\infty}, [M^{\infty}], \xi^{\infty}).$$

It is evident by the Doob inequality that $\sup_n \mathbf{E} \sup_{t \leqslant T} |\Delta M_t^n| \leqslant 2\mathbf{E} \sup_{t \leqslant T} |W(t)| \leqslant 4\sqrt{T}$. It is not difficult to show that $V_q(X^n; [0,T])$ is tight in \mathbb{R} (see the proof of (8)). Thus the conditions of Lemma 3 are satisfied and

$$\left(X^{n^{\prime\prime}}, \int\limits_0^{\cdot} f\big(X^{n^{\prime\prime}}_{s-}\big) \mathrm{d} M^{n^{\prime\prime}}_s, \int\limits_0^{\cdot} f\big(X^{n^{\prime\prime}}_{s-}\big) \mathrm{d} A^{n^{\prime\prime}}_s, \int\limits_0^{\cdot} ff^{\prime}\big(X^{n^{\prime\prime}}_{s-}\big) \mathrm{d} [Z^{\varkappa^{n^{\prime\prime}}}]_s, \xi \right)$$

$$\stackrel{D}{\longrightarrow} \left(X^{\infty}, \int\limits_0^{\cdot} f(X^{\infty}_s) \, \mathrm{d} M^{\infty}_s, \int\limits_0^{\cdot} f(X^{\infty}_s) \, \mathrm{d} A^{\infty}_s, \int\limits_0^{\cdot} ff^{\prime}(X^{\infty}_s) \, \mathrm{d} [M^{\infty}]_s, \xi^{\infty} \right).$$

Thus

$$\begin{split} \sup_{t\leqslant T} \left| X_t^{n''} - \xi - \int\limits_0^t f\big(X_{s-}^{n''}\big) \mathrm{d}Z_s^{\varkappa^{n''}} - \frac{1}{2} \int\limits_0^t ff'\big(X_{s-}^{n''}\big) \mathrm{d}[Z^{\varkappa^{n''}}]_s \right| \\ \xrightarrow{D} \sup_{t\leqslant T} \left| X_t^\infty - \xi^\infty - \int\limits_0^t f(X_s^\infty) \, \mathrm{d}Z_s^\infty - \frac{1}{2} \int\limits_0^t ff'(X_s^\infty) \, \mathrm{d}[M^\infty]_s \right|. \end{split}$$

As a consequence

$$X_t^{\infty} = \xi^{\infty} + \int_0^t f(X_s^{\infty}) dZ_s^{\infty} + \frac{1}{2} \int_0^t ff'(X_s^{\infty}) d[M^{\infty}]_s, \quad t \leqslant T.$$

Since on $(\overline{\Omega}, \overline{\mathcal{F}}, \overline{\mathbf{P}})$ this equation has a unique solution and $\mathcal{L}(\xi^{\infty}, M^{\infty}, [M^{\infty}], A^{\infty}) = \mathcal{L}(\xi, W, [W], B^H)$ then $\mathcal{L}(X^{\infty}, \xi^{\infty}, M^{\infty}, [M^{\infty}], A^{\infty}) = \mathcal{L}(X, \xi, W, [W], B^H)$.

Proof of Theorem 2. Since $M^n \to W$ and $A^n \to B^H$ a.s. in D([0,T]) then similarly as in [8] one can prove that

$$\sup_{t \le T} \left| X^n(t) - X(t) \right| \xrightarrow{P} 0, \quad \text{as } n \to \infty.$$

Since $Y^n(t) = X^n(t)$ for $t \in \varkappa_n$, the proof of Theorem 2 is completed.

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).
- [2] J. Jacod, A.N. Shiryayev, Limit Theorems for Stochastic Processes, Vol. 1, Fiziko-Matematicheskaja Literatura, Moscow (1994).
- [3] A. Jakubowski, J. Mémin, G. Pages, Convergence en loi des suites d'intégrales stochastiques sur l'espace D¹ de Skorokhod, Probab. Theory Related Fields, 81, 111-137 (1989).
- [4] K. Kubilius, The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion, Lith. Math. J. (special issue), 40, 104-110 (2000).
- [5] K. Kubilius, On Existence and Uniqueness of the Solution of the Integral Equation Driven by a Continuous p-semimartingale. Preprint (2001).
- [6] K. Kubilius, The existence and uniqueness of the solution of the integral equation driven by a p-semimartingale of the special type, Stochastic Processes Appl. (to appear) (2002).
- [7] R.S. Liptser, A.N. Shiryaev, Statistics of Random Processes. Nauka, Moscow (1974).
- [8] L. Slominski, Stability of strong solutions of stochastic differential equations, Stochastic Processes Appl., 31, 173-202 (1989).

Stochastinių integralinių lygčių, valdomų tolydžių jų p-semimartingalų, aproksimacija

K. Kubilius

Nagrinėjama integralinių lygčių, valdomų tolydžiųjų p-semimartingalų, Vong-Zakai tipo aproksimacija.