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Introduction

Let (, F,F,P),F = {F;,t > 0}, be a stochastic basis satisfying the usual conditions
and let a standard Brownian motion W and a fractional Brownian motion (fBm) B¥,
with the Hurst index 1/2 < H < 1, be F-adapted.

A fBm with the Hurstindex 0 < H < 1 is a centered Gaussian process X = {X;,t >
0} with Xy = 0 and with the covariance

Cov(Xe, X,) = %Var(Xl)(tZH + 570 — |t - 5|2H),

forallt,s > 0. If Var(X;) = 1, we write X = B¥. The case H = 1/2 corresponds to
the standard Brownian motion.

Consider the equation
t 1 t
X, = £+ff(X,)dZ, +s /ff’(X,)d;, te[0,T], )
0 0

where Z = W + B 1/2 < H < 1. For short, we shall write ff’(X,) instead of
F(Xa)f'(X).

If f € CZ then there exists a unique adapted solution of the equation (1) having almost
all sample paths in the space CW,([0,T7]),2 < g < 1/(1 — H), where CW,([0,T7) is
the class of all continuous functions defined on [0, T'] with a bounded g-variation. This
result one can easily obtain from [4, 6]. (For definitions see [4, 6].)

Let 5™ = {tp: 0 < k < m(n)} be a sequence of partitions of the interval [0, T,
ie,0 =1} <t} <. <t =T, suchthat &, = max; [t,; — t7| tends to 0 as
n — +00.

Let Z™ be a sequence of linear approximations of a process Z, i.e.,

Z7(t) = Z(tk-1) + -—k-l— (Z(tk) = Z(t;-1)),

fort € [tp_,,t7], n € N, 1 < k < m(n). Note that for any n process Z™ has bounded
variation.
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For partition »™ define p"(t) = max{ty: t} < t} and r"(t) = max{k: t} < t},
t € [0,T). For every z € D([0,T]) := D([0,T],R) the sequence {z*" } denotes the
following discretizations of z:

x:‘n = .’L‘(t;:) fort € [tz,t;:..’_l)) 0 S k g m(n)’ ne N'

Define the approximation
t 1 t

Xp =+ [ 164z +5 [1£(X2)A27), teD T neN. @
0 0

If f is locally Lipschitz continuous and satisfies linear growth condition then for every
n € N there exists a unique strong solution to

t
Yr() =€+ / F(YP)dzZE, te0,T], neN. 3)
0

Now we formulate our results.

Theorem 1. Let f € CZ. Then
(Xﬂ,Wx“,BH,x") .ﬂ’ (X,VV,BH) as n— oo,

where X is the unique solution of the equation (1). By D, we denote the weak convergence
of corresponding probability measures on D([0, T}, R3).

Theorem 2. Assume that X is a solution of (1) and {Y™} is a sequence of solutions of
(3). Then

sup |[Y™(t) — X (t)] N 0, asn— 0.
t<T

1. Aucxiliary results and proofs

Since almost all sample paths of the processes B, 1/2 < H < 1, are Holder continuous
then

V. (BY;[s,1]) := v}/"(BY; [s,1]) < LFV7 (£ — 5)/7, @)
where v,(BH ; [s,t]) is the r-variation of the BH s<t r>1 /H,

LH,'1= sup IBtH_Bfl

a#t !t - Sl‘y
5,t<T

, O<y<H, E([IL#) <o, Vkx1.
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Any local martingale is locally of bounded g-variation for each ¢ > 2. Moreover,
forg > 2and 0 < r < 2 there are a finite constants Ky », £, such that for continuous
martingale M = {M(t),0<t < T}

B{u(M; 0, T)}"* < Koo B{ sup MO} < KorteB{MT}. 5

Lemma 3 (see [3, 5]). Let {M"}, {A"}, and {)? "} be a sequences of cadlag F™ adapted
processes, where M™ is a local martingale, A™ is a process with p-bounded variation,
1<p<2, X™ is a process with g-bounded variation, ¢ >2, ¢~ +p~' > 1. Assume that

sup Esup |AM[| < +oo,
n T

{Vo(4™;[0,T))}, n € N, and {V,(X™; [0, T])},n € N, are tight in R. If
(X, M~ A™) 2 (X, M, 4) in D([0,T],R®),
where X , M and A are continuous processes, then M is a local martingale adapted to

the natural filtration G generated by ()? , M, A), A is a process of p-bounded variation
adapted to G, and

()?",M", an, / X dmr, / xn dA;')
0 0
2, ()’E,M,A, / X, dM,, / X, dA,) ©6)
0 (V]

in D([0, T], R®).

Define the approximation
t 1 t
)?;‘=§+/f()?;""")dz.+-2- /ff’(}?;""")ds, te[0,T),neN. (7
0 0

Lemma 4. Let f € C}. Then the sequence {Xn} is tight in C([0, T)).

Proof. Letq > 2,p>1/H,and q~! + p~! > 1. First we note that

EVZ"(X";[0,T]) < 4% Ko orlor| fIXTT + | £121 1257

1
1-a)? (
+C2 ol FIEV (BH;10,T1))

2r/(1-a)
+45 7B (Cpgral flaVo (B 0,T)))

@®
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The proof is similar as in Lemma 1 [6].

Now we prove the tightness of the sequence { X "}

At first we will show that there exists an nondecreasing continuous function F' and
B > 1 such that for any s,t € [0,T],s <t,t —s<1,

E|Xr - X7|* < |F@t) - F(9))”.
By the Love-Young inequality (see [4]), the inequality (4), and Lemma 4.11 [7] we get

E|Xr - X7|* < 3°- 36|74t - 5)°
+33C2 VA, (F(X™; [0, T])V; (BY: [s, 1))
+32 274 F4 |18t — 5)* S Ct - 9)%,

where C is the constant not depending on 7. Thus by Theorem 12.3 in [1] we get the
tightness of the sequence {X™} in the space C([0, T]).

Lemma 5. Let f € C}. Then the sequence { X"} is tight in D([0, T)).
Proof. Since X™(t7) = Xn(tm) for 1 < i < m(n) then

sup | X7 — X7| < |floosup |2(t) — 27" (¢)]
t<T t<T

m(n)

+|flool f* |ooZ|W(tn)_W(t |- [BE (7)) - BY(6y)]

m(n)
AflealFloo 3 [BH(E7) = BEG ) + ol enbin
=1
() 5 5
+sup S (XR ) [(W(t?) - W(tr,))" - (& - t?.l)]l => L
=1 i=1

We may assume, without loss of generality, that 6, < 1. Note that

Esup|Z; — th"| < E{Ll/%l/q + LH.I/p}57ll/q,
t<T

where ¢ > 2,p > 1/H, and ¢~! + p~! > 1. Further
El; < O|floolf/loeT6HY/2,  EI3 < |flool f'locT6R .

By the Doob inequality

m(n)

BIE < alfLif 1 3 B[OV - W) - (@ )|
< 4TI e
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Therefore E sup;<r |X," - )?ﬂ — 0,as n — oo. By Lemma 4 we have that the
sequence {)? "} is tight. Thus by Lemma 3.31 in Section 6 in [2] we obtain that the
sequence { X"} is tight.

Proof of Theorem 1. Define M™ = W*" and A™ = BH:*", The process (M™, F")
is a martingale, where F* = (F,n(s)). The process A™ has bounded p-variation since
Vo(A™[0,T)) < Vu(BH;[0,T)). Note that M™ — W as. and A® — B¥ as. in
C([0, T']). Moreover,

sup |[M"]t —tl £, 0, n— oo,
t<T

where
m(n) )
MM = 3 (W(eR At) - Wty AD)”
k=1 .

By Lemma 5, by Corollary 3.33 in Section 6 in [2], and facts obtained above it follows
that the sequence {(X™, M™, A", [M"],£)} is C-tight. Thus from every subsequence
{n'} c {n} we can choose a further subsequence {n"} such that

(X"”’M"”,An”,[Mn"],g) _L_)_+ (X°°,M°°,A°°,[M°°],£°°),

as n” — oo, where (X%, M*, A<, [M*], £%) is defined on some probability space
(@, F,P) and L(¢°, M, [M™], A®) = L(¢, W, [W], B¥). Since

sup |[Z"" Je — [M"”],| £,
t<T

as n” — oo, and functions f and ff’ are continuous, then by the continuous mapping
theorem

(X"'”’f(Xn”),ff’(Xn”)’Mn",Aﬂ"’ [an ]’6)
2 (X, f(X), ££/(X®), M™, A%, [M*],6%).
It is evident by the Doob inequality that sup,, Esup,¢r |AM}| < 2Esup,¢r |[W(t)] <

4V/T. 1t is not difficult to show that Vg(X™;[0,T)) is tight in R (see the proof of (8)).
Thus the conditions of Lemma 3 are satisfied and

(X"", / F(Xyamy”, / F(XyaAr, / ff’(X;‘i')d[Z"""].,,ﬁ)
V] 0 0

-, (X°°, 0/ (XY dM®, 0/ F(X) dA, 0/ £ () M., Ew).
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Thus

sup
t<T

't t
X' g~ [s0anaz -5 [ 1 @a)az,
0 0

D
— sup
t<T

.

t t
1 ! oo 00
xe e - [ oeaze -5 [ e ae),
0 0
As a consequence
t 1 t
X% = £ 4 / F(X)azE + 3 / FX) M), t<T.
0 0

Since on (8, F, P) this equation has a unique solution and L(£%°, M*, [M*], A®) =
L(E, W, [W], BH) then L(X®, £, M, [M*], A) = L(X, £, W, [W], BH).

Proof of Theorem 2. Since M™ — W and A™ — B as. in D([0, T')) then similarly
as in (8] one can prove that

sup | X™(t) — X (2)]| £,0, asn— oo
t<T

Since Y™ (t) = X™(t) for t € sy, the proof of Theorem 2 is completed.
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