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Introduction

We consider the existence of weak solutions to the one-dimensional stochastic differential
equation

dX; = 01(X,_)dZ® +05(X,_)dZP, Xo =1, )

where 0, and o5 are bounded measurable nonnegative functions on R = (—o0, 00) and
Zt(l), Zt(z) are independent skew stable process of order o € (1, 2) with the characteristic
functions

Eexp {iﬁZt(j)} = exp { — ct|€]* (1 + (~1)isgné tg 0—‘271) }, i=1,2, 2)

respectively, ¢ >0, t >0, £ € R.

Stochastic differential equations with measurable coefficients are important in the
stochastic optimal control theory, since, in many cases, their solutions are optimal pro-
cesses. The study of such equations was originated by Krylov [3], in the case of driving
Brownian motion, and developed by many authors (see, e.g., [5] and references therein).

The paper consists of two sections. In Section 1, an L,-estimate for stochastic inte-
grals is derived and, using this estimate, in Section 2, the existence of a weak solution to
equation (1) is proved.

1. L,-estimate of stochastic integrals

Let (Q, F,F, P) be a complete probability space with a right-continuous filtration F =
(Fe), and let (Z), F,) and (Z(?), F:) be skew stable processes of order a € (1,2) with
the characteristic functions given by (2).

Consider the following optimal control problem. Fix a € (1, 2) and introduce a class
of control strategies B as the class of all predictable processes 1 > r; > 0 such that
Ire — 1| < 6, where

§= ifae(g,2), 0<5<1/(2|tg5‘52’—’|) ifa e (1,3/2). 3)

N =
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The controlled process X, t(') and the value function v are defined by
t t o0
X" = / rilagzM 4 / (1—1,)/2dZ®, v(z)=supE / et f(z+X7)dt,
reB
0 0 0

where f is a nonnegative smooth function on R with compact support.

Lemma 1. (i) the function v is bounded and Lipschitz continuous,
(ii) there exists a constant N such that the function v(x) + Nxz? is convex,
(iii) (Bellman principle) for each x € R

v(z) = sup E{/e'tf(:r + Xt(r))dt +e u(z + X }, 4)
res
0

where T, € B, are arbitrary F-stopping times,
(iv) (Bellman equation) for almost every € R

sup {rLiv(z)+ (1 —r)Lov(z) —v(z) + f(z)} =0,
|r-4|<s

where
T d f d
Lyu(z) = f Vgu(x)-y—l%, Lyu(z) = / vgu(x)w’{t;,
0 —00
V2u(z) = u(z +y) —u(z) — v'(z)y.

The first two assertions of the lemma follow immediately from the definition of v.
The assertions (iii) and (iv) can be proved using standard arguments from the stochastic
optimal control theory (see [2]). '

Let £ be a smooth nonnegative function on R such that £(z) = 0 if |z| > 1 and
[ €é(z)dz = 1. Let £(z) = £(z/€)/e. We further use the following notation:

u(z) = / £z —-yu)dy, llulz= { / u2(w)d~'£}l/2.
Lemma 2. For eachz € R

v(z) < Miflvllz < Nallfll2, S
where the constants Ny and N, depend on 6 and o only.

Proof. According to (5),

-;—(le +Lw)—-v<0 aeinR. ‘ (6)
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By Lemma 3 of [4], this inequality implies

9(0) 1 T cos(éz)
V@) € o TS

and the first inequality in (6) is proved.
Assertions (i) and (ii) of Lemma 1 imply that
vzv(x) 2 _N ’

for almost every = € R and each y € R and that there exists a constant ¢ > 0 such that
Liv > —cand Lyv > —ca.e. in R. These estimates, together with (7), yield

esssup (|L1v| + |Lav]) < oo. M
z€

By (4),

v(z) = sup Ee"’;'rv(a: +X 1(_:?") < sup Ee™"R” sup |u()),
reB R re® y€R

where 75" = inf{t > 0: z + X" € (~R,R)} and R is such that f(z) = 0 if z ¢
(=R, R). 1t is easy to prove that sup, ¢ Ee™"# " is an integrable function. Therefore, v

is integrable on R.
As can be easily seen, (5) is equivalent to the equation

1
E(le + Lav) + 5|L1’U — szl —-v+ f=0,
a.e. R. Taking the convolution with £%, we have

(L1v® + Lov®) + 6| L1 — Lyw®| -0 + £, =0, (8)

N =

where f. = f(&) 4 8[| L1v — Lav|© — |L10() — Lyv()]].

Since v is bounded and integrable, L;v(® and Lov(® are integrable and, by (8),
bounded uniformly with respect to €. According to (9), the function |Lyv — Lpv|(®)
is integrable and bounded. This, together with the Fubini-Tonelli theorem, implies that
|Lyv — Lav| is integrable and bounded.

By (9),

2
[v(‘) - -;—(le(e) + Lg’v(e))] = [fe + (5|L1'U(e) - sz(e)”z.
Applying Young’s inequality, we have that, for each 4 > 0,

v®? _ () (L1v'®) 4+ Lyv®)) + %(le(s) + erv(‘))2 '
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< (1 + %) £2 481+ ) (Lao® — Lyv®)”.
Integrating both sides of this inequality and using Parseval’s equality, we conclude that
1
(€)(12 < = 2
@13 < (14 ) 1fel ©)

if 62(1 + p)(2tg %F)2 < 1. According to (3), (10) holds for sufficiently small g > 0.
Passing to the limit in (10) as € — 0 and using the Lebesgue dominated convergence
theorem, we get the second inequality in (6). The lemma is proved.

Let 0 = (01, 02¢) be a pair of predictable nonnegative bounded processes such that
loSe/(0%: +05,) — 1/2| <6, (10)

where § is defined by (3). Denote

t

t t
Xe = / 1,20 + / 02,dZ®, ¢ = 0%+ 0, ¢ = / 47 ds.
0 0 0

Theorem 1. Let assumption (11) be satisfied. Then, for each x € R and every nonnega-
tive Borel function f on R,

o0
E [ e 671 (z+ X0)at < NIfla,
0
where the constant N depends on 6 and a only.

Proof. By assertion (iv) of Lemma 2, for all nonnegative numbers o1 and o9 such that
log /(o +0%) —1/2| <6,

02 Lyv + 05 Lav —v(0f + 0§) + f(oF +0%) <0,
a.e. in R. Taking the convolution with £¢, we have
0% L1v() + 0§ Lyv® — v (0% +0F) + fO) (oF +03) <0,

inR. This inequality, together with the Ito formula, yields
t
Ee %7 v (z 4+ X7) - v9(z) =E / e ¥t (a‘{’tle(‘) + 0%, Lav®
0

t
~97v) (e + XP)dt < B / e™# ¢ ) (z + X7 )ds.
0 .
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Letting ¢ — 0 and t — oo, we have
(> <]
E [e¥7 47 /(o +X7)dt < vle),
0

and, in the case of smooth functions f with compact support, the assertion of the theorem
follows from Lemma 2. This result can be extended to nonnegative Borel functions f by
standard arguments, e.g., using the results of Sect. 1.2 of [3]. The theorem is proved.

2. Existence of weak solutions

Theorem 2. Let a € (1,2), and let nonnegative measurable functions o1 and o2 on R
be suchthat u < 01 + 02 < 1/pand|of/(0f + 0%) — 1/2| < 6, where p is a positive
constant and the constant § is defined by (3).

Then equation (1) has a weak solution.

Proof. The proof is similar to that of Lemma 3.2 of [5].
. . - (en)
Let e, — 0 as n — oo be a sequence of positive numbers. Since oin := 0; ',
i = 1,2, are smooth functions for each n, on each stochastic basis (2, F,F,P) with
skew stable processes (Z(1), F) and (Z(?), F) there exists a unique strong solution X7 to
the equation

dXT = 010 (X7 )2 + 09n (X7 )AZP), X3 =u.

It is easy to verify that the sequence (X7, Zt( 1), Zt(z)) is tight in the Skorokhod topology.
By virtue of the Skorokhod representation theorem there exist a complete probability
space (1, 7, F, P), a subsequence (still denoted by n) of processes (X , —Z_gl)", 7&2)”)
and a process (X, 7?),722)) such that:

(i) for each n, the laws of (7?,79”,752)") and (X7, Zt(l), Zt(2)) coincide,

(ii) (Y:,?Sl)", 7§2)") - (Xs, Zﬁl),7§2)) in probability as n — oo.

It is easy to prove that 751)" and _Z-fz)" are independent skew stable processes with
the characteristic functions (2) as well as ‘z‘ﬁ" and 722). Moreover,

dX; = 01a (X )2 + 00 (X12)4Z,",  Xp ==

Hence, it suffices to prove that foreach t > 0

t

t
[ om@®i)az" — / a(X,0)dZ),  i=12,
0

0

in probability as n — oo.
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Consider, for example, ¢ = 1. Obviously,

t t
P{ /Uln(._)(—:_)dZﬁl)n—/Ul(ys_)d_z-gl) >36}
0 t 0 t
gP{‘ / o (X7_)dZ0" - / o14(X,-)dZL) >e}
0 0
t
+P{ / (01 — o1) (X, )dZ3) >e}. 2)

>e}
0

t
+P{‘ / (010 — o0 (X-)dZy "
0

The first term on the right side tends to zero as n — oo, since o1 is a smooth function.
According to Theorem 2.1 of [6] and Theorem 1,

"

for each R > 0, where 7§ = inf{t > 0: X]* ¢ (—R, R)}. Letting first n — oo, then
k — oo and R — oo, we conclude that the second term on the right-hand side of (12)
tends to zero as n — oo and k — o0o. The same arguments show that the last term on the
right-hand side of (12) tends to zero as k — oo, since the estimate of Theorem 1 can be
extended for the process X;. The theorem is proved.

ATR

1= o) @)z
0

tATR
>e} < Ne™®E /loln—alk|a(-)?:_)ds

0
< New®|||o1n — 0wkl *B-rm) ||
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Stochastinés diferencialinés lygtys pagal asimetrinius stabiliuosius
procesus
H. Pragarauskas

Irodytas vienmagiy stochastiniy diferencialiniy lyggiu pagal asimetrinius stabiliuosius procesus
su matiais koeficientais silpnyjy sprendiniy egzistavimas. [rodymas remiasi stochastiniy integraly
Lo-ivertiu.



