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1. Introduction

Dynamic logic [1] has had strong impact on a number of field, including computer sCi-
ence, artificial intelligence and formal theories of knowledge. In this paper first-order
dynamic logic, where an atomic program is considered as an arbitrary binary relation
and formulas are constructed using first-order logic, is considered. This logic (in short
RDL) can be used for reasoning about multi-agent system. RDL is close to first-order
branching-time logic, which is incomplete, in general.

Here we present deduction-based decision procedure for a miniscoped fragment of
RDL. The main characteristic peculiarity of the proposed procedure is a verification of
loop properties (see Lemma 6).

2. Infinitary sequent calculus RD,,

Decision procedure M RSat is justified by means of infinitary calculus RD,, containing
an w-type rule.

The language of RDL consists of the set of predicate symbols, the set of atomic
programs, logical symbols and program operators. Programs and formulas are defined
inductively, as usual. In the paper 7, 71, 72, - . . denote atomic programs. A sequent is an
expression of the form I' — A, where I, A are arbitrary finite multisets of formulas.

DEFINITION 1. A sequent S is miniscoped sequent if S satisfies the following mini-
scoped condition: all negative (positive) occurrences of V (3, correspondingly) in S oc-
curs only in formulas of the shape QzE, where E is an atomic formula; this formula
is called an quasi-atomic formula. Atomic formula is a special case of quasi-atomic for-
mula, if Qz = @

DEFINITION 2. A miniscoped sequent S is M R-sequent if S satisfies the following re-
gularity condition: let a formula [@*]A occur negatively in S, then A does not contain
positive occurrences of formulas of the shape []B in S.
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A M R-sequent S is induction-free M R-sequent if S does not contain positive oc-
currences of formulas [8]A, where § includes a program of the shape o*. Otherwise a
M R-sequent S is non-induction-free one.

The calculus RD,, is defined by the following postulates.

Axioms:

1) [@*]A,T — A, [o*)4;

2) E(t1,...,tn), I = A, 321 ... 20 E(z1,...,20);

3) Vry... 2 E(zy,...,20), T = A E(t1,.. ., ta);

4) Vx; ... 2, E(t1(z1), .. ., ta(zn)), T = A, 301 .. . ynE(@1(11), - - ., Pn(¥n)),
where E is a predicate symbol, Vi (1 € ¢ € n) terms t;(z;) and p;(y;) are
unifiable.

Rules:
Program rules:

T sebedldd o TR Y

I' - A [a]4;,T— A, [BIA | IA,! !A,I‘—+A
F—[)]A,[auﬂ]A[ﬂ] (=) aau B += (U—*)

Loblel e (o) Alelblo8 (o)

Ay A = B (0,
A AT = &, 0By 1B,

k-ti
ime
wherein ([y]) m >0, n>0,and 1 <i < njin(— [@*],) [a]*Ameans [a]...[a] A.

Logical rules: traditional invertible rules for D, A, V, —, and rules (— V), (3 —).

Using proof-theoretical methods we can prove that the calculus RD,, is sound and
complete and cut rule is admissible in RD,,.
The calculus RD is obtained from RD,, by dropping the rule (— [a*].,).

3. Some auxiliary tools of decision procedure M RSat

In this section we present some preparatory steps of the proposed decision procedure
MRSat.

Let {i} denotes a set of rules of some calculus. Then {i}-reduction (or briefly, re-
duction) of S to a set of sequents Sy, ..., S, (denoted by R(S){i} = {S1,...,Sn} or
briefly by R(S)), is defined to be a tree of sequents with the root S and leaves Sj, .. ., Sq,
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and, possibly, axioms of the calculus, such that each sequent in R(S), different from S,
is the premise of the rule from {i} whose conclusion also belongs to R(S).

DEFINITION 3. A MR-sequent S is reduced one if S = X, (7], .y () —
2, [7]A, where Z; = @ (i € {1,2}) or consists of quasi-atomic formulas; [v:)IL = @
(1 < i < n) or consists of formulas of the form [7;] B; (B; is an arbitrary formula); A is an
arbitrary formula. A M R-sequent S is primary one, if $ = Ty, [a1]y,. .., [an]ll, —
T2, [a*]°4, where T, £, A means the same as in reduced M R-sequent; a; € {v,8*},
where 3 is an arbitrary program; [*]° € {2, [@*]}.

Now we present rules by means of which reductions of a M R-sequent to reduced and
primary M R-sequents are carried out.

Formulas A, A* are called parametrically identical formulas if either A=A*or A
and A* are congruent, or A and A* differ only by corresponding occurrences of eigen-
variables of the rules (— V), (3 —).

The following rules will be called r-reduction rules (all these rules, except the con-
traction rules, will be applied in the bottom-up manner):

1) all logical rules of the calculus RD;
2) the program rules of the calculus RD, except the rule ([4]), and the following
program rule:

F->AAT—Ade]A .
TS Al A (= o]

3) the contraction rules, where contraction formulas are quasi-atomic parametrically
identical formulas E, E*.

From the fact that RD,, - [a*]A = A A [a] [a*]A and admissibility of cut rule, we
get that the rule (— [a] [*]) is admissible and invertible in RD,,.
The p-reduction rules include all r-reduction rules and a following separation rule:

S*=1,..., 112, — A
S=21,[’Yﬂ IIl,...,['y'm]l'Im —'22,[’)’1]A1,...,[’Yﬂ] An

wherem > 0, n > 0, T; = @ (i € {1, 2}) or consists of quasi-atomic formulas and the
sequent £; — X is not an axiom of RD; Ax € A;, because forevery i (1 < i < n)
[vi] A; is a multiset of formulas of the shape [v:] Axs II?- =2(1<j<mify; #v
(1<i<n)and I =1II; if v} = %.

(Sp),

Lemma 1. Let S be M R-sequent. Let S be a conclusion and S* = m,..., 1% — A
be a premise of the rule (Sp). Let £; — X2 be not an axiom of RD,,. IfRD,, - S then
there exists k such that RD,, F S*.

Lemma 2. Let S be a M R-sequent. Then there exist the following reductions of the
sequent S : R(S){ir} = {S1,...,5n} and R(S){ip} = {51, .. ., St} where {i,} is
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the set of r-reduction rules and {ip} is the set of p-reduction rules, and S; (1 < i < n) is
a reduced M R-sequent, S} (1 < j < m) is a primary M R-sequent. Moreover, RD,, +-
§S=RD,FSi(1<i<n)and RD,+ S = RD,F S;(1<j<m)

Proof. The reduction R(S){ip} = {S},...,Sn} is carried out by means of the follow-
ing algorithm.

1) Starting from S, let us reduce S (using r-reducing rules) to a set of reduced
sequents Sy, ..., Sy.

2) Let us apply bottom-up the rule (Sp) to sequents Si, ..., S, which are not
axioms. This rule is applied so many time as it is possible. We get the sequents

1s- -+, S which are the premises of the last application of the rule (Sp) to the
sequents Si, ..., S, respectively. In common case numbers m and n may be
different.

3) If Vi (1 << < m) S} is a primary M R-sequent then process is finished.
4) Let S} is not a primary M R-sequent then S := S} and return to Step 1.

The implication RD,, + S = RD,, S; (1 £ j < m) follows from the invertibility
of r-reduction rules and Lemma 1.

The calculus RD* is obtained from the calculus RD replacing the rule ([y]) by the
rule (Sp) which is applied bottom-up. It is evident that only induction-free M R-sequent
can be derivable in the calculi RD and RD* because these calculi have no rule of the
shape ([— a*]).

Using regularity condition we get that for any induction-free M R-sequent S
RDV\ Siff RD* - S.

Lemma 3. The calculus RD? is decidable.
Proof. Using the invertibility of r-reduction rules and Lemma 1.

Let R(S){ip} = {S},..., S5} be a reduction of M R-sequent S to a set of primary
M R-sequents. Let us delete from {S},..., S} such primary M R-sequents S} (1 <
i < n) which are either axioms of RD* or derivable in RD*. The obtained reduction is
called the proper reduction of a M R-sequent S to a set of primary M R-sequents and is
denoted by R*(S).

4. Description of decidable calculus M RSat

In this section the decidable calculus M RSat for M R-sequents is described.

We say that the M R-sequents S and S’ are parametrically identical (in symbols S =~
S") if the sequents S, S’ differ only by parametrically identical formulas.

Let us introduce the following structural rule:

r-A . . '
m',—o.(w)’ where ' > AxI' - A’
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We say that a M R-sequent Sy subsumes a M R-sequent S; or S is subsumed by S
(in symbols Sy » Sa) if S is a conclusion of an application of therule (W*)to Sy (ina
special case Sy = §2).

The schema of subsumption rule is defined as follows (this rule is applied in the
bottom-up manner):

1

+
S1r.155.:55,.,5n (Sm™),

Siyeey 89, 821,841+, Sn

where Si, ..., S, are M R-sequents and there exists i (i € {1,..., n}) such that there
existsj (j € {1,...,i—1,i+1,...,n})and S; > S;. +€ {2, *}. This schema gives
us two rules, namely, if + = * and j is unique then S} = @, otherwise SO =S;.

A subsumption-tree (denoted by (ST*)) of M R-sequents Sy,..., Sn is defined by
the following bottom-up deduction:

St,..., Sk
Lk (Smt)
(8T),
, (Smt)
S1y.--1Sn

where the set of M R-sequents M = {S},..., Sk} is such that it is impossible to
apply (Sm*) to the set M. The sequents from (ST*) which subsumes some sequents
from (ST+) will be called active part of (ST ), and the sequents of (ST*) which are
subsumed will be called passive part of (ST).
Let R*(S) be the proper reduction of M R-sequent S to a set of primary sequents
%, ...,S%. Then the resolvent-tree of a M R-sequent S is defined by the following
bottom-up deduction (denoted by ReT'(S)):

S s,
. o b ReT(S).
\ o/

S )

The set {S1, ..., Sn} of primary sequents is resolvent of M R-sequent S and is de-
noted by Re(S). If the set {S},...,Sm} contains induction-free M R-sequent, then
the construction of ReT(S) is unsuccessful (in symbols ReT'(S) = 1). If the set
{St,...,S%} is empty then Re(S) = @.

From Lemmas 2 and 3 we get

Lemma 4. Let S be a M R-sequent, then the problem of construction of ReT (S ) is de-
cidable.
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To define the main deductive procedure of the proposed decision saturation-based
procedure M RSat let us introduce some auxiliary notions.

DEFINITION 4. A set of R-subformulas of a formula A from M R-sequent S (denoted
by RSub(A)) is defined inductively.

1. RSub(FE) = @, where E is a quasi-atomic formula.
. RSub([7]E) = E, where FE is an quasi-atomic formula.
. RSub([y]A) = {[7)A} U RSub(A).
. RSub(—A) = RSub(A).
. RSub(A ® B) = RSub(A) U RSub(B), where @ is a logical operator.
. RSub(QzB(z)) = RSub(B(cp)), where Q is V (3) and occurs positively

(negatively) in S and co is a new constant.

. RSub([a*]A) = {[a*]A} U RSub(A).

8. Let E and E are parametrically identical quasi-atomic formulas, and

E € RSub(A). Then E; € RSub(A).

A set of R-subformulas of a primary M R-sequent S = A;,...,Ap, — Bi,..., B

is denoted by RSub(S) and defined as follows: RSub(S) = ."-'51 RSub(A;) U

U RSub(B;).

R'Sub(S) means the set obtained from RSub(S) by merging the formulas that are
parametrically identical. The set RSub(S) is parametrically finite if R* Sub(S) is finite.

[« NS I VA I S )

~

From Definition 4 we get
Lemma 5. Let S be a M R-sequent, then the set R* Sub(S) is finite.

Now we define the main deductive tool of the proposed decision procedure M RSat,
which will be applied to a primary M R-sequent. Let us define k-th resolvent-tree
RekT(S) and k-th resolvent Re*(S) of a primary M R-sequent S.

DEFINITION 5. Let S be a primary M R-sequent. If S is an axiom then Re°(S) = &,
otherwise Re®(S) = Re°T(S) = S. Let Re*(S) = {S1,..., Sn}, then Re¥*+1(S) and
Rek+1T(S) are defined by the following bottom-up deduction:

ReF+1(8)
: (5T)
Ref*1(S) (U Re(S))*
(1) =
@Reﬂsl). Re(s")ReT(s,.)
) Re"(S)

The bottom-up application of (ST') reduces the set ‘EJI Re(S;) to a preliminary re-
solvent Rek+1(S) of primary M R-sequents. In the bottom-up application of (ST*) the
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sequents from (»f)o Ret(S))* are active part of the application of (ST™) and the sequents
i=

ko ko

from Rc';‘“(S) are passive one. (.U0 Re*(S))* is obtained from 'Uo Re*(S) deleting
1= 1=
all sequents which are not used as active part of (ST*). The bottom-up application of
ko

(ST*) reduces the set Rek+1(S) U ( U Re!(S))* to the set Re*+1(S) which will be
called (k + 1)-th resolvent of a primary M R-sequent S. If 3i (1 < 7 < n) such that
ReT(S;) = L then Rek¥t1(S) = L and Re**1T(S) = L, i.e., the construction of
Re*+1T(S) is not successful. The set Re*+1(S) is empty in two following cases: either
Vi (1 € i < n) Re(S;) = 2, or the bottom-up application of (ST*) in Re*+1T(S)
yields the empty set.

Notation Re*T'(S) # L (k € w) means that the construction of Re*T(S) is success-

ful forall k € w.
Now we establish the main property of the procedure of construction of Re*T'(S).

From Lemma 5 and Definition 6 we get

Lemma 6. Let S be a primary M R-sequent and Re*T(S) # L (k € w). Then there
exists finite natural number p such ReP(S) = @.

From Lemmas 3, §, 6 we get
Lemma 7. The relation ReP(S) = @ is decidable.

Let S be a induction-free M R-sequent, then the calculus M RSat coincides with
the calculus RD*. An induction-free M R-sequent is derivable in M RSat (in symbols
MRSat + S) if RD* I S, otherwise M RSat ¥ S. Let S be a non-induction-free
M R-sequent, then M RSat is described by two procedures:

(1) procedure of reduction of S to a set of primary sequents Re(S) = {S,,..., S},

(2) the procedure of construction of k-th resolvent Re*(S;), where (1 < i < n).

We say that M RSat + S if either Re(S) = @ or Re(S) = {S1,...,Sa}, and Vi
(1 < i < n) Rek(S;) = @. Otherwise M RSat ¥ S.
From Lemmas 3, 6 we get

Lemma 8. The calculus M RSat is decidable for any M R-sequent.
Theorem 1. Let S be a M R-sequent, then RD,, + S <= MRSat + S. Thus the

calculus M RSat is sound and complete.
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ISsprendZiamoji procediira dinaminés logikos fragmentui
A. Pliuskeviliené

Pasiiilyta dedukcija pagrista i$sprendZiamoji procediira miniskopizuotam pirmos eilés di-
naminés logikos fragmentui. Pasiiilyta i$sprendZiamoji procediira yra korektiska ir pilna.



