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1. Linear path model of tire wear

Let ¢ be the tire run (measured, say, in thousands of kilometers) and X (t) denote the tire
wear at the moment ¢ (measured, say, in milimeters). We suppose that, for all ¢ > 0,

X(t) =t/A, (1.1)

where A is a positive random variable with unknown distribution function 7.

Also suppose that tire failures are divided into m + 1 groups and denote by Tk (k =
0,...,m) the moment of failure of the kth type. The number k = 0 is assigned to the
non-traumatic failure which arises when tire wear attains some critical value zo. Hence,

by (1.1),
TO = IL‘oA.

Other failures are traumatic. We suppose that T, .. ., T™ are conditionally independent
(given A = a) and have intensities which depend only on tire wear, i.e.,

t
P(Tk >t|A=a)= e)(p(—-/ /\k(s/a) ds) — e_a/\"(t/a),
0
where \*, k =1, ..., m, are positive measurable functions and

Ar@) = [ Xe(y)dy.
@ = [ M)y
Set
fet]a) = NF(¢ Ja)e=oA"(t/a),

Then f(t; | a)... fx(t | a) is a density of the joint distribution of random variables
A,T!, ... T™ with respect to the product of the measure 7 and of the Lebesgue measure
on (0; co)™.
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In practice we observe only the earliest failure moment
T = min(T°,...,T™), (1.2)

and the random variable

0 for T=T°,
1 for T=T1, ‘

o | (13)
m for T=T™,

which indicates the type of the failure observed. Now we can formulate the statistical
problem which is considered in this paper. Suppose that for each of n tires the failure
moment T}, the failure type V; and the tire wear level at the failure time X; are observed.
Then X; = T;/A;, where A; is the wear rate of the ith tire. Hence the values of the A;s
also are known, i.e., our inferences can be based on the data

(Ala Xl) ‘/l)’ vy (Am Xn’ V‘n))
which are independent copies of the random vector (A4, T/A, V). We have to estimate the
unknown distribution function 7 and cumulative failure intensities A¥, k = 1,...,m.
2. Non-parametric estimation of the tire wear rate and cumulative failures
intensities

The distribution function = is estimated by the empirical distribution function

fin(a) = % Z 1.

A;<a

It is well-known that this estimate is uniformly consistent, i.e., almost surely
suplitn(a) - 7(a)] = 0,
a
as n — oo. Moreover, if the function 7 is continuous then the random function

\/ﬁ("?n - )

tends in distribution in the Skorokhod space D[0; oo] to a zero mean Gaussian process
W? with the covariation function

EW°(a)W°(a’) = n(a Ad’) — m(a)n(a’).
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The estimates of cumulative intensities will be based on the counting processes

N = Y 1 @1

X<z, Vi=k

The following theorem shows that these processes satisfy the so-called multiplicative
intensities model (see [1]).

Theorem 2.1. Let Fo denote the o-field generated by the random variables A,, . .., A,
and NX(y), ..., N*(y) withy < x. Then the process N¥ can be written in the form

N(z) = /0 " X (4) Ha(y) dy + MA(z),

where
Hu(z)= ) A, (2.2)
X2z
and (M¥(z) | 0 < z < x0) is a martingale with respect to the filtration (F, | 0 € z <

To). Moreover, the predzctable covariation of the processes M,’f and M,’, is given by
<MEM, > (2) =6 [ MHa)d, @3)
0

where 8y stands for the Kronecker symbol.

In the multiplicative intensities model cumulative intensities are estimated by the
Nelson-Aalen estimates. In our case they are given by

Be= [ Hrwwie=- ¥ |5 Aj]_l. 0.4

Xi<z,Vi=k " X; 2 X;

Theorem 2.2. If EA < oo then the estimate A* is uniformly consistent, i.e., almost
surely

sup |[Ak(z) — A¥(z)| -0, as n— oo
0<z<r0
Notice that this theorem is stronger than Theorem IV.1.1 of [1], where only conver-
gence in probability is proved.
Set A(z) = Al(z) + ...+ A™(z) and h(z) = E[Ae~4A(R)]. If EA < oo then, by
the Strong Law of Large Numbers, almost surely

n~ H,(z) — h(z),
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as n — oo. Therefore Theorem IV.1.2 of [1] (see the remark below the proof of this
theorem) implies that the random function

Va(AL — AL, AT — A™)

tends in distribution in the space D™ [0; zo| to (W1, ..., W™), the vector of independent
zero mean Gaussian processes with covariation function

EW*(z)W*(z') = o*(z A 2'),

where
73\
ok (z) = / %(%dy.
0

Our last theorem shows that the estimates 7, and Af, are asymptotically independent.

Theorem 2.3. If the function 7 is continuous and EA < oo then the random function
Vn(d, —m AL — AL ... A™ — A™)

tends in distribution in the space D|[0; oo] x D™|0; zo| to a random vector function with

independent components.

3. The proofs

Proof of Theorem 2.1. Fix arbitrary 0 < y < = < zo and prove that
E [N,’,‘(:c) — NX(y) | fy] = E[ / Xe(u) Hp, (u)du | .7-',,].
Yy

By linearity, it suffices to consider the case n = 1. If A = a and X < y then the
random variable N*(z) almost surely coincides with N*(y) (for short we omit the lower
index 1). If A = a and X > y then N*(z) takes two values, 0 with probability 1 — p and
1 with probability p, where

p=Pya<T*<za,T,...,T™|T > ya,A=na)

= %) a p (t/a)e'“A(‘/ ) 4t = ge®A@) / : 2E (u)‘e““‘(“) du.
va v

Hence

E[V@IA] - ) = Lxonpd [ Mo A[0-20] gy, 31
Yy
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In the same way we get

E[l(x>a)lFy] = 1{x>y}e'A[A(z)—A(y)]'

Therefore the right-hand side of (3.1) equals
A [ ¥@ElpxoulA) = B[ [ HWHE wE]
Y
v

We proved that M} is a martingale. This means that J A¥H,, is a compensator of
the counting process N. Therefore (2.3) follows from the continuity of the compensator
(see [1], Section II. 4).

Proof of Theorem 2.2. First prove that Ak (z) is a consistent estimate of AF(z) for each
fixed z € [0; zo). Fix an integer ¢ > 1 and forr =0, 1,.. ., g define y, = rz/q. Also set

Ko = 3 [Ha(y)]

yr-1<Xi<yr,Vi=k

Then

q
Ak(z) <> Knr.

r=1

By the Strong Law of Large Numbers, K, tends almost surely to

E[a [y, e 40 dy
Cqr = E[Ae_AA(y")] -

Therefore almost surely
a k
li Ai(z) < lim Y cgr = AR ().
msupAy(z) < lim, ;:1: or = A% (2)

In the same way we prove that almost surely
liminf A% (z) > A¥(z).
n—oo

Hence A¥(z) is a consistent estimate of A¥(z). Now uniform consistency is proved ana-
logously as the Glivenko-Cantelli theorem.

Proof of Theorem 2.3. Define a probability space (€2, P) =TI:2,(%, P;), where, forall 4,
Q; = (0; 00) x (0;1)™ and P; is a product of the measure 7 and of the Lebesgue measure
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on (0; 1)™. The components of the vector w; € ; will be denoted by (&, ui1, - - ., Uim)-
Forallw = (w; | 4 > 1) and a = (a; | ¢ > 1) define

Ai(w) =, T(a,w)=zoa,
and,fork=1,...,m
TF(a,w) = a; ¥ (—log(1 — uik)/ai),

where U* denotes the inverse function of A*. If A = (A; | i > 1) then
(A;, TO(A), ..., Tm(A)) are independent copies of the vector (4, T°,...,T™).

Define the random variables T(a) and V(a) by formulae (1 2) and (1.3) with
T°,...,T™ replaced by T(a),...,T™(a). Set Xi(a) = Ti(a)/a; and define the pro-
cesses N *(a,z) and Hy(a, ) by equahtles (2.1) and (2.2) with X;, V;, A; replaced by
Xi(a), Vi(a), a;. Repeating the proof of Theorem 2.1 shows that N%(a) — -f MeH,(a)
is a martingale with respect to the filtration (F;(a) | 0 < z < zo), where F(a) is the
o-field generated by the random variables N1 (a, ), . . ., N™(a,y) withy < z.

Define the processes A (a) by formula (2.4) with H ny Nk k replaced by H,(a), N¥(a).
By the Weak Law of Large Numbers,

n
n~'Hy(a,z) — n~? Zaie""'“(’)
i=1

tends to 0 in probability as n — oco. Hence we can repeat the proof of Theorem IV.1.2 of
[1] to get the following result: if; for all € [0; zo),

n~! Zaie_“‘A(’) — h(z), 3.2)
=1
then the random function
Vr(AL(a,") = AY(),.. ., AR(a, ) = A™())
tends in distribution in the space D™[0; zo] to (W1,...,W™).
Fix arbitrary bounded continuous function ¥ from D™(0; 1] to R. Then
Ep(Al(a,)) = A'(),...,AT(a,) — A™())) = Ep(W!,..., W™),

for all sequences a satisfying (3.2). The expectatlon on the left-hand side is a variant
of the conditional expectation £ [1/)(A1 LAm— A™)|A], where A denotes the
o-field generated by the random variables A1 , Ag, .. Since almost surely

n~! ZA;e‘A"A(“’) —h(z){—0
i=1

sup
0<z<To
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(this is proved analogously as the Glivenko-Cantelli theorem),
E[$p(AL — AL, AT = A™)|A] - Ep(W?,...,W™)
almost surely. This yields, for any bounded continuous function ¢ from D[0; co] to R,

E[p(fn — mW(AL = A, AT = A™)] = E[p(WO) E[p(W?,..., W™)].
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Padangy dylimo greiio pasiskirstymo ir sprogimy intensyvumu
iverciy asimptotinés savybés
V. Bagdonavitius, A. Bikelis, V. Kazakevitius

Nagrin¢jamas padangos eksploatavimo modelis, kuriame padangy sprogimy intensyvumai pri-
klauso nuo padangos nusidévéjimo laipsnio. Sukonstruoti neparametriniai sprogimy intensyvumy
iver&iai ir irodyta, kad jie asimptotiskai nepriklauso nuo padangos dylimo greitio pasiskirstymo
neparametrinio jvercio.



