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1. Introduction

We consider the problem of estimating a posteriori probabilities from the multidimen-
sional sample supposed to satisfy multidimensional Gaussian mixture model with the
outliers (i.e. random noise). It is known (see, e.g., [6] and [7]) that in the case of pure
Gaussian mixture model projection to lower dimension subspace can reduce errors of es-
timates of a posteriori probabilities. Suppose that outliers in the mixture model satisfy
Tukey-Huber distortion model (see [11]). We present computer simulation results which
demonstrate the influence of noise level and noise type to the estimates of a posteriori
probabilities.

In general we face a dilemma: classification of the initial sample or projection to lower
dimension subspace and then classification of the projected sample. Presence of the out-
liers makes this problem more complicate. One of possible methods to select whether to
project the data to lower dimension subspace or not is the bootstrap method. We simulate
realizations with some preliminary parameters obtained from the sample, then compare
errors of estimates of a posteriori probabilities, assuming that preliminary parameters are
true parameters of the sample. One of the main difficulties is to obtain sufficiently good
preliminary parameters in the presence of the outliers. Also the outliers make impact on
the results of the projection pursuit procedure finding basic vectors of the discriminant
subspace.

Theoretical background of the problem of classification of multidimensional Gaussian
mixture is given, e.g., in [8]-[10]. The problem of presence of the outliers is given, e.g.,
in [11]. We are thankful to prof. R. Rudzkis who gave the idea and many constructive and
valuable remarks.

The introduction presents already known methods. Description of the EM algorithm
and the projection pursuit algorithm is given, e.g., in [8]-[9].

Main definitions. Let ©(-; M;, R;) et vi, t = 1,2,...,q be different d-dimensional
Gaussian distribution densities, where means M; and covariance matrices R;, 1 =
1,2,...,q, are unknown. Let we have ¢ independent d-dimensional random variables
Y;* with distribution densities
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where h; is “distortion” probability density for the gth class, &; is outlier probability of the
gth class. Let v* be random variable (r.v.) independent of Y;*, i = 1,2, ..., ¢, and taking
on values 1,2, ..., q with unknown probabilities p; > 0,7 = 1,2,...,q, respectively. In
this paper we assume that number of classes g is known. We observe d-dimensional r.v.
X = Y. Each observation belongs to one of g classes (including outliers) depending
on r.v. v*. Distribution density of r.v. X is therefore a Gaussian mixture density with
Tukey-Huber distortions
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where 8 = (p}, M, R, i = 1,2,...,q) is an unknown multidimensional parameter to
be estimated. Probabilities p; = P{v* = i} are a priori probabilities for r.v. X to belong
to ith class (including probability of the outlier). Denote
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and let all the outliers belong to the class 0. Now let we have g independent d-dimensional
Gaussian random variables Y; with distribution densities ¢;(x) and independent d-
dimensional random variable Y; with distributiondensity h(z). Let v be random variable
(r.v.) independent of Y;, i = 0,1,2,...,q, and taking on values 0, 1, 2,...,q with unk-
nown probabilities p; > 0,7 = 0,1,2,...,q, respectively. Probabilities p; = P{v =1}
are a priori probabilities for r.v. X to belong to ith class. We can rewrite equality (2) as
follows:

q
f(x) = pipi(z) + poh(z). ®)
=1
We will consider the general classification problem of estimating a posteriori probabili-
ties 7(i,z) = P{v = i|X = z} from the sample {X1, Xz, ..., Xn} f XN ofiid.
random variables with distribution density (5). Under assumptions above

pid®) ;.

n(i,z) = 7I'0('."3:) = _f(_x—O)_’ - q, TE Re. (6)

The most common method to estimate a posteriori probabilities is based on the EM-
algorithm (see, e.g., [8]).
Let V = cov (X, X) be the covariance matrix of r.v. X. Define the scalar product of

arbitrary vectors u, h € R as (u, h) = w7V ~1h and denote by up the projection of
arbitrary vector u € R? to a linear subspace H C R¢. Discriminant space H is defined as
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a linear subspace H C R? with the property P{v = i|X =z} = P{v = i| Xy =z},
i=1,2,...,q z € R% and the minimal dimension. Denote k = dim H. It is known that
for Gaussian mixture densities with equal covariance matrices we have k < g. Clearly,
if k < g and H is known, then it is better to estimate a posteriori probabilities from the
projected sample rather than initial sample. Unfortunately, in practice H is not known
“and must be estimated and we get additional estimation errors. As shown in [6] and [7]
in many cases despite additional errors the projected sample allows to decrease errors of
estimation of a posteriori probabilities.

2. Computer simulation results

We present computer simulation results on the influence of the outliers to the statistical
procedure of the selection one of the two methods of estimating of a posteriori probabili-
ties:

1) Method based on application of the EM algorithm to the initial sample from R¢.
This method is implemented in software created in Institute of Mathematics and Informa-
tics (see [5]). This software does not require user intervention, because initial parameter
estimates are selected from the sample;

2) Two stage estimation method, where in the first stage we estimate k-dimensional
space H from the sample (see [9], [10]). In the second stage a posteriori probabilities are
estimated using first method to the projected sample.

Computer simulation was done as follows. We simulate the sample XV with the se-
lected mixture model and the selected sample size (in our case N = 300). As basic mix-
ture model we selected 5-dimensional Gaussian mixture model with three clusters with
means (-5, —a, 0,0, 0), (0, 2a,0,0,0), (5,a,0,0,0), equal probabilities and unit cova-
riance matrices. At the next step we obtain parameters for bootstrap using the completely
automatic procedure, which starts from no information about cluster structure. Bootst-
rap begins with simulating selected number (in our case 10 realizations) of independent
realizations with obtained parameters now supposed to be known. To each realization
we apply the procedure of calculating accuracy of estimation of a posteriori probabilities
without projection, with projection to one-dimensional subspace and with projection to
two-dimensional subspace (as in [7]).

In this paper we present two examples of computer simulation results that demonst-
rate influence of the outliers to the of the automatic parameter estimation procedure and
bootstrap methods. In these examples parameters for bootstrap are obtained from theore-
tical parameters (using EM algorithm) that were used for simulation of the sample X N
excluding the noise cluster.

We studied accuracy of estimation of a posteriori probabilities and number of Baye-
sian classification errors (i.e., classification using estimated parameters vs. classification
using theoretical parameters). Accuracy of estimation of a posteriori probabilities is me-
asured as mean absolute distance [(#"V, 7V) between the estimated a posteriori probabili-
ties # and the theoretical a posteriori probabilities V. We compare distance I(#", 7V)
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Fig. 1. Mean absolute error Fig. 2. Mean absolute error (using
(projection to true directions) projection pursuit procedure)
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and I(#}, wN) where &N are obtained from MLE in the initial space and #} are obtained
from MLE in the discriminant subspace H. Number of Bayesian classification errors is
measured as percentage of differences in Bayesian classification comparing classification
using known theoretical parameter versus classification using estimated parameter.
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In Example 1 (see Figs. 1-4, in all Figs. on z axis we have noise level €) we use
basic mixture model (parameter a = 0) with one noise cluster with center at zero point
and covariance matrix 100 times unit covariance matrix (this component is added to the
standardized basic mixture model). In the case of projection to true directions we project
data to = and y axes. In other case we project data to the directions obtained using projec-
tion pursuit procedure. We compare accuracy of estimation of a posteriori probabilities,
number of Bayesian classification errors.

In Example 2 (see Figs. 5-6) we use basic mixture model (parameter a = 0) with
two symmetrical noise clusters with centers (0,—3,0,0,0) and (0, 3,0,0,0) and unit
covariance matrices added to the standardized basic mixture model.

Computer simulation results show that large deviation of the outliers makes the big
influence on the estimates of a posteriori probabilities even for low noise level. At the
same time in the case of projection to the lower dimension subspace we obtain better
accuracy of estimates of a posteriori probabilities. Influence of the outliers to the projec-
tion pursuit procedure results is comparatively small. Reversely, small deviation of the
outliers (situatéd far from the main clusters) makes little influence on the estimates of the
a posteriori probabilities even for high noise level. This is because in this case automatic
procedure finds noise clusters well separated from the main clusters. However, outliers
situated outside discriminant subspace for the high noise level makes impact to the results
of the projection pursuit procedure. From the computer simulation results we can draw
a conclusion that some modification is required to the procedures to make them more
robust to the presence of the outliers.
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I&siskirian¢iu stebéjimu itaka daugiamaciy Gauso misiniu
klasifikavimui

G. Jakimauskas

Nagrinétas aprioriniy tikimybiy statistinio jvertinimo uZdavinys, kai stebéjimai tenkina dau-
giamatio Gauso miSinio modelj su i¥siskirianiais stebéjimais. Tiriamas i§siskirian¢iy stebéjimy
jtaka bootstrap metodo taikymui, kuomet yra parenkamas vienas i dvieju metody: EM algoritmo
taikymas pirminiams duomenims arba projektuotiems i maZesnés dimensijos erdve.



